Skip to main content

Advertisement

Log in

Effects of Long-Term Trampling on the Above-Ground Forest Vegetation and Soil Seed Bank at the Base of Limestone Cliffs

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambrosio L, Iglesias L, Marin C, Del Monte JP (2004) Evaluation of sampling methods and assessment of the sample size to estimate the weed seed bank in soil, taking into account spatial variability. Weed Research 44:224–236

    Article  Google Scholar 

  • Amrein D, Rusterholz HP, Baur B (2005) Disturbance of suburban Fagus forests by recreational activities: effects on soil characteristics, above-ground vegetation and seed bank. Applied Vegetation Science 8:175–182

    Article  Google Scholar 

  • Andrey P, Tscharner N, Luisier A (1997) Fluebible, Kletterführer Basler Jura. Dynamo Productions, Binningen

    Google Scholar 

  • Baur B (2003) Freizeitaktivitäten im Baselbieter Wald. Ökologische Auswirkungen und ökonomische Folgen. Verlag des Kantons Basel-Landschaft, Liestal

    Google Scholar 

  • Baur B, Fröberg L, Müller SW (2007) Effect of rock climbing on the calcicolous lichen community of limestone cliffs in the northern Swiss Jura Mountains. Nova Hedwigia 85:429–444

    Article  Google Scholar 

  • Bernhardt-Romermann M, Gray A, Vanbergen AJ, Berges L, Bohner A, Brooker RW et al (2011) Functional traits and local environment predict vegetation responses to disturbance: a pan-European multi-site experiment. Journal of Ecology 99:777–787

    Article  Google Scholar 

  • Booth BD, Larson DW (1998) The role of seed rain in determining the assembly of a cliff community. Journal of Vegetation Science 9:657–668

    Article  Google Scholar 

  • Bossuyt B, Honnay O (2008) Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science 19:875–884

    Article  Google Scholar 

  • Bossuyt B, Heyn M, Hermy M (2002) Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forests. Plant Ecology 162:33–48

    Article  Google Scholar 

  • Brown D (1992) Estimating the composition of a forest seed bank. A comparison of the seed extraction and seedling emergence method. Canadian Journal of Botany 70:1603–1612

    Article  Google Scholar 

  • Burnand J, Hasspacher B (1999) Waldstandorte beider Basel. Quellen und Forschungen zur Geschichte und Landeskunde des Kantons Basel-Landschaft. Band 72. Verlag des Kantons Basel-Landschaft, Liestal

    Google Scholar 

  • Chambers JC (1994) A day in the life of a seed. Annual Review of Ecology and Systematics 25:263–292

    Article  Google Scholar 

  • Cohen S, Braham R, Sanchez F (2004) Seed bank viability in disturbed longleaf pine sites. Restoration Ecology 12:503–515

    Article  Google Scholar 

  • Council Directive 92/43/EEC. http://ec.europa.eu/environment/nature/legislation/habitatsdirective/index_en.html

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • De Gruchy MA, Matthes U, Gerrath JA, Larson DW (2001) Natural recovery and restoration potential of severely disturbed talus vegetation at Niagara Falls: assessment using a reference system. Restoration Ecology 9:311–325

    Article  Google Scholar 

  • Falinska K (1971) An estimate of diaspore production in the ecosystem of a mixed oak-hornbeam forest (Querco-Carpinetum) in the Bialowieza national park. Ekologia Polska 19:525–561

    Google Scholar 

  • Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates and consequences. Conservation Biology 19:680–688

    Article  Google Scholar 

  • Forcella F (2003) Debiting the seed bank: priorities and predictions. Aspects of Applied Biology 69:151–162

    Google Scholar 

  • Graber RE, Thompson DF (1978) Seeds in the organic layers and soil of four beech-birch-maple stands. United States Forest Service Research Paper NE-401

  • Grime JP, Mason G, Curtis AV, Rodman J, Band SR, Mowforth MAG et al (1981) A comparative study of germination characteristics in a local floral. Journal of Ecology 69:1017–1059

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. Hyman, London

    Google Scholar 

  • Hamberg L, Malmivaara-Lamsa M, Lehvavirta S, O’Hara RB, Kotze DJ (2010) Quantifying the effects of trampling and habitat edges on forest understory vegetation—a field experiment. Journal of Environmental Management 91:1811–1820

    Article  Google Scholar 

  • Hanemann B (2000) Cooperation in the European mountains. 3. The sustainable management of climbing areas in Europe. International Union for Conservation of Nature, Gland

    Google Scholar 

  • Hegetschweiler KT, Van Loon N, Ryser A, Rusterholz HP, Baur B (2009) Effects of fireplaces on forest vegetation and amount of woody debris in suburban forests in Northwestern Switzerland. Environmental Management 43:299–310

    Article  Google Scholar 

  • Hill R, Pickering CM (2009) Differences in resistance of three subtropical vegetation types to experimental trampling. Journal of Environmental Management 90:1305–1312

    Article  Google Scholar 

  • Kissling M, Hegetschweiler KT, Rusterholz HP, Baur B (2009) Short-term and long-term effects of human trampling on above-ground vegetation, soil density, soil organic matter and soil microbial processes in suburban beech forests. Applied Soil Ecology 42:303–314

    Article  Google Scholar 

  • Kozlowski TT (1999) Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research 14:596–619

    Google Scholar 

  • Larson DW, Matthes U, Kelley PE (2000) Cliff Ecology. Pattern and process in cliff ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Leck MA (1989) Wetland seed banks. In: Leck MA, Parker VT, Simpson RL (eds) Ecology of seed banks. Academic, London, pp 283–305

    Google Scholar 

  • Leckie S, Vellend M, Bell G, Waterway MJ, Lechowicz MJ (2000) The seed bank in old-growth, temperate deciduous forest. Canadian Journal of Botany 78:181–192

    Google Scholar 

  • Liddle M (1997) Recreation ecology. Chapman Hall, London

    Google Scholar 

  • Maranon T (1998) Soil seed bank and community dynamics in an annual-dominated Mediterranean salt-marsh. Journal of Vegetation Science 9:371–378

    Article  Google Scholar 

  • Matthes U, Gerrath JA, Larson DW (2003) Experimental restoration of disturbed cliff-edge forests in Bruce Peninsula National Park, Ontario, Canada. Restoration Ecology 11:174–184

    Article  Google Scholar 

  • McMillan MA, Larson DW (2002) Effects of rock climbing on the vegetation of the Niagara escarpment in southern Ontario, Canada. Conservation Biology 16:389–398

    Article  Google Scholar 

  • MeteoSwiss (2005a) Normwerte 1961–90 der Lufttemperatur. Federal Office of Meteorology and Climatology MeteoSwiss. http://www.meteoschweiz.ch. Accessed 2 Nov 2008

  • MeteoSwiss (2005b) Normwerte 1961–90 der Niederschlagssumme. Federal Office of Meteorology and Climatology MeteoSwiss. http://www.meteoschweiz.ch. Accessed 2 Nov 2008

  • Mickelson JA, Grew WE (2006) Effect of soil water content on wild oat (Avena fatua) seed mortality and seedling emergence. Weed Science 54:255–262

    CAS  Google Scholar 

  • Muller FM (1978) Seedlings of the north-western European flora: a flora of seedlings. Junk, The Hague

    Google Scholar 

  • Müller S, Rusterholz HP, Baur B (2004) Rock climbing alters the vegetation of limestone cliffs in the northern Swiss Jura Mountains. Canadian Journal of Botany 6:862–870

    Article  Google Scholar 

  • Müller S, Rusterholz HP, Baur B (2006) Effects of forestry practices on relict plant species on limestone cliffs in the northern Swiss Jura mountains. Forest Ecology and Management 237:227–236

    Article  Google Scholar 

  • Müller-Dombois D, Ellenberg H (2002) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Heft 85. Veröffentlichungen des Gebobotanischen Institutes der ETH. Stiftung Rübel, Zürich

    Google Scholar 

  • Pakeman RJ, Small JL (2005) The role of seed bank, seed rain and the timing of disturbance in gap regeneration. Journal of Vegetation Science 16:121–130

    Article  Google Scholar 

  • Pickering CM, Mount A (2010) Do tourists disperse weed seed? A global review of unintentional human-mediated terrestrial seed dispersal on clothing, vehicles and horses. Journal of Sustainable Tourisms 18:239–256

    Article  Google Scholar 

  • Plue J, Goyens G, Van Meirvenne M, Verheyen K, Hermy M (2010) Small-scale seed-bank patterns in a forest soil. Seed Science Research 20:13–22

    Article  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roovers P, Bossuyt B, Igodt B, Hermy M (2006) May seed banks contribute to vegetation restoration on paths in temperate deciduous forest? Plant Ecology 187:25–38

    Article  Google Scholar 

  • Rusterholz HP, Müller SW, Baur B (2004) Effects of rock climbing on plant communities on exposed limestone cliffs in the Swiss Jura mountains. Applied Vegetation Science 7:35–40

    Article  Google Scholar 

  • Rusterholz HP, Kissling M, Baur B (2009) Disturbances by human trampling alter the performance, sexual reproduction and genetic diversity in a clonal woodland herb. Perspectives in Plant Ecology Evolution and Systematics 11:17–29

    Article  Google Scholar 

  • Schmidt I, Leuschner C, Molder A, Schmidt W (2009) Structure and composition of the seed bank in monospecific and tree species-rich temperate broad-leaved forests. Forest Ecology and Management 257:695–702

    Article  Google Scholar 

  • Ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Ter Heerdt GN, Verweij GL, Bekker RM, Bakker JP (1996) An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Functional Ecology 10:144–151

    Article  Google Scholar 

  • Thompson K (1992) The functional ecology of seed banks. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford

    Google Scholar 

  • Thompson K, Grime JP (1979) Seasonal variation in the seed bank of herbaceous species in ten contrasting habitats. Journal of Ecology 67:893–921

    Article  Google Scholar 

  • Thompson K, Bakker JP, Bekker RM, Hodgson JG (1998) Ecological correlates of seed persistence in soil in the north-west European flora. Journal of Ecology 86:163–169

    Article  Google Scholar 

  • Ursenbacher S, Alvarez C, Armbruster GFJ, Baur B (2010) High population differentiation in the rock-dwelling land snail (Trochulus caelatus) endemic to the Swiss Jura Mountains. Conservation Genetics 4:1265–1271

    Article  Google Scholar 

  • Walter H, Straka H (1970) Arealkunde. Floristisch-historische Geobotanik. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Walthert L, Zimmermann S, Blaser P, Luster J, Lüscher P (2004) Waldböden der Schweiz. Band 1. Grundlagen und Region Jura. Eidgenössische Forschungsanstalt WSL, Birmensdorf. Hep Verlag, Bern

    Google Scholar 

  • Wassmer A (1998) Zur Felsenflora des östlichen Kettenjuras. Grundlagen und Berichte zum Naturschutz. Band 17. Baudepartement. Sektion Natur und Landschaft, Aargau

    Google Scholar 

  • Yan QL, Zhu JJ, Zhang JP, Yu LZ, Hu ZB (2010) Spatial distribution pattern of soil seed bank in canopy gaps of various sizes in temperate secondary forests, Northeast China. Plant and Soil 329:469–480

    Article  CAS  Google Scholar 

  • Zabinski C, Wojtowicz T, Cole D (2000) The effects of recreational disturbance on subalpine seed banks in the Rocky Mountains of Montana. Canadian Journal of Botany 78:577–582

    Google Scholar 

  • Zobel M, Kalamees R, Pussa K, Roosaluste E, Moora M (2007) Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes. Forest Ecology and Management 250:71–76

    Article  Google Scholar 

  • Zoller H (1989) Die Verarmung der Pflanzenwelt. In: Imbeck-Löffler P (ed) Natur aktuell, Lagebericht zur Situation der Natur im Kanton Basel-Landschaft im Jahr 1988. Verlag des Kantons Basel-Landschaft, Liestal, pp 217–246

    Google Scholar 

Download references

Acknowledgments

We thank A. Baur, S. Gallet, C. Pickering, and two anonymous reviewers for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Peter Rusterholz.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusterholz, HP., Verhoustraeten, C. & Baur, B. Effects of Long-Term Trampling on the Above-Ground Forest Vegetation and Soil Seed Bank at the Base of Limestone Cliffs. Environmental Management 48, 1024–1032 (2011). https://doi.org/10.1007/s00267-011-9727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-011-9727-z

Keywords

Navigation