Skip to main content

Advertisement

Log in

Biologically Defined Soil Organic Matter Pools as Affected by Rotation and Tillage

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The importance of soil organic matter is well recognized; however, changes in C and N fractions are inadequately quantified. The objective of this study was to determine tillage and crop rotation effects on soil organic C and N fractions from a long-term (27-year) study in eastern Kansas. Cropping systems included continuous and rotation sequences of wheat (Triticum aestivum L.), grain sorghum (Sorghum bicolor (L.) Moench), and soybean (Glycine max (L.) Merrill) on a Muir silt loam (fine-silty, mixed, mesic Cumulic Haplustolls). Tillage included conventional (CT), reduced (RT), and no-till (NT). Total C and N (CT and NT) were determined on all treatments. Mineralizable C and N (Co and No) and microbial biomass C and N were determined for the NT and CT soybean and sorghum rotations. Cropping systems that included wheat contained the greatest amount of CT and NT. Continuous wheat contained 2910 g C m−2 and 287 g N m−2, compared to 2225 g C m−2 and 222 g N m−2 (0–15 cm) for continuous soybean. No-tillage contained 1128 g C m−2 and 109 g N m−2 at 0–5 cm compared to 918 g C m−2 and 87 g N m−2 for CT. Sorghum contained 51% more Co than soybean, and NT accounted for 59% more Co than CT. More crop residue was produced and retained in rotations that included sorghum. No-tillage increased C 2440 kg ha−1, while CT increased C 340 kg ha−1 across all soybean/sorghum rotations. The highest sequestration rate (122 kg C ha−1 y−1) was observed with NT sorghum and was equivalent to ∼3.2% of the plant material (root and shoot, less gain harvest) remaining in the soil annually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • E. Bremer C. van Kessel (1992) ArticleTitleSeasonable microbial biomass dynamics after addition of lentil and wheat residues Soil Science Society of America Journal 56 1141–1146

    Google Scholar 

  • G. A. Buyanovsky C. L. Kucera G. H. Wagner (1987) ArticleTitleComparative analysis of carbon dynamics in native and cultivated ecosystems Ecology 68 2023–2031

    Google Scholar 

  • M. R. Carter D. A. Rennie (1982) ArticleTitleChanges in soil quality under zero tillage farming systems: Distribution of microbial biomass and mineralizable C and N potentials Canadian Journal of Soil Science 62 587–597 Occurrence Handle1:CAS:528:DyaL3sXovVWgtQ%3D%3D

    CAS  Google Scholar 

  • H. P. Collins P. E. Rasmussen C.L. Douglas Jr (1992) ArticleTitleCrop rotation and residue management effects on soil carbon and microbial dynamics Soil Science Society of America Journal 56 783–788

    Google Scholar 

  • J. R. Deans J. A. E. Molina C. E. Clapp (1986) ArticleTitleModels for predicting potentially mineralizable nitrogen and decomposition rate constants Soil Science Society of America Journal 50 323–326 Occurrence Handle1:CAS:528:DyaL28XitVKisb8%3D

    CAS  Google Scholar 

  • A. J. Dolman E. D. Schulze R. Valentini (2003) ArticleTitleAnalyzing carbon flux measurements Science 301 916 Occurrence Handle10.1126/science.301.5635.916b Occurrence Handle1:STN:280:DC%2BD3szosVSruw%3D%3D Occurrence Handle12920280

    Article  CAS  PubMed  Google Scholar 

  • C. F. Drury J. A. Stone W. I. Findlay (1991) ArticleTitleMicrobial biomass and soil structure associated with corn, grasses, and legumes Soil Science Society of America Journal 55 805–811

    Google Scholar 

  • A. J. Franzlubbers F. M. Hons D. A. Zuberer (1994) ArticleTitleSeasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems Soil Biology and Biochemistry 26 1469–1475 Occurrence Handle10.1016/0038-0717(94)90086-8

    Article  Google Scholar 

  • A. J. Franzlubbers F. M. Hons D. A. Zuberer (1995) ArticleTitleSoil organic carbon, microbial biomass, and mineralizable carbon and nitrogen in sorghum Soil Science Society of America Journal 59 460–466

    Google Scholar 

  • S. D. Frey E.T. Elliott K. Paustian (1999) ArticleTitleBacterial and fungal abundance and biomass in congenital and no-tillage agroecosystems along two climatic gradients Soil Biology and Biochemistry 31 573–585 Occurrence Handle10.1016/S0038-0717(98)00161-8 Occurrence Handle1:CAS:528:DyaK1MXitlagu70%3D

    Article  CAS  Google Scholar 

  • Garcia, F. O. 1992. Carbon and nitrogen dynamics and microbial ecology in tallgrass prairie. Ph.D. Dissertation. Kansas State Univ., Manhattan. (Dissertation Abstract 92-35625).

  • F. O. Garcia C. W. Rice (1994) ArticleTitleMicrobial biomass dynamics in tallgrass prairie Soil Science Society of America Journal 58 816–823

    Google Scholar 

  • R. F. Grant (1997) ArticleTitleChanges in soil organic matter under different tillage and rotation: Mathematical modeling in ecosys Soil Science Society of America Journal 61 1159–1175 Occurrence Handle1:CAS:528:DyaK2sXlt1Shtr0%3D

    CAS  Google Scholar 

  • G. Guggenberger S. D. Frey J. Six K. Paustian E. T. Elliott (1999) ArticleTitleBacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems Soil Science Society of America Journal 63 1188–1198 Occurrence Handle1:CAS:528:DyaK1MXns12mu7s%3D

    CAS  Google Scholar 

  • J. L. Havlin . Kissel L. D. Maddux M. M. Claasen J. H. Long (1990) ArticleTitleCrop rotations and tillage effects on soil organic carbon and nitrogen Soil Science Society of America Journal 54 448–452

    Google Scholar 

  • J. L. Havlin D. E. Kissel (1997) Management effects on soil organic carbon and nitrogen in the east-central Great Plains of Kansas E. A. Paul (Eds) Soil organic matter in temperate agroecosystems: Long- term experiments in North America CRC Press Boca Raton, FL. 381–386

    Google Scholar 

  • Y. Herbert E. Guingo O. Loudet (2001) ArticleTitleThe response of root/shoot partitioning and root morphology to light reduction in maize genotypes Crop Science 41 363–371

    Google Scholar 

  • D. S. Jenkinson D. S. Powlson (1976) ArticleTitleThe effects of biocidal treatments on metabolism in soil—V. A method for measuring soil biomass Soil Biology and Biochemistry 8 209–213 Occurrence Handle10.1016/0038-0717(76)90005-5 Occurrence Handle1:CAS:528:DyaE28Xkslens7c%3D

    Article  CAS  Google Scholar 

  • D. L. Karlen A. Kumar R. S. Kanwar C. A. Cambardella T. S. Colvin (1998) ArticleTitleTillage system effects on 15-year carbon-based and simulated N budgets in a tile drained lowa field Soil and Tillage Research 48 155–165 Occurrence Handle10.1016/S0167-1987(98)00142-1

    Article  Google Scholar 

  • V. J. Kilmer L. T. Alexander (1949) ArticleTitleMethods of making mechanical analyses of soils Soil Science 68 15–24

    Google Scholar 

  • R. Lal J. M. Kimble R. F. Follett C. V. Cole (1999) The potential of US cropland to sequester carbon and mitigate the greenhouse effect CRC Press Boca Raton, FL

    Google Scholar 

  • R. Lal (2002) Why carbon sequestration in agricultural soils J. M. Kimble (Eds) Agricultural practices and policies for carbon sequestration in soil CRC Press Boca Raton, FL 21–30

    Google Scholar 

  • G. W. Langdale L. T. West R. R. Bruce W. T. Miller (1992) ArticleTitleRestoration of eroded soil with conservation tillage Soil Technology 5 81–90 Occurrence Handle10.1016/0933-3630(92)90009-P

    Article  Google Scholar 

  • A. Legere (2002) ArticleTitleResidual effects of crop rotation and weed management on a wheat test crop and weeds Weed Science 50 101–11 Occurrence Handle1:CAS:528:DC%2BD38Xhtl2ktL4%3D

    CAS  Google Scholar 

  • L. Lopez-Bellido R. J. Lopez-Bellido J. CE. Castillo F. J. Lopez-Bellido (2001) ArticleTitleEffects of long-term tillage, crop rotation and nitrogen fertilization on bread-making quality of hard red spring wheat Field Crops Research 72 197–210 Occurrence Handle10.1016/S0378-4290(01)00177-0

    Article  Google Scholar 

  • P. Loveland J. Webb (2003) ArticleTitleIs there a critical level of organic matter in the agricultural soils of temperate regions: a review Soil and Tillage Research 70 1–18 Occurrence Handle10.1016/S0167-1987(02)00139-3

    Article  Google Scholar 

  • Mallarino, A. P. 2001. Impacts of crop rotation and nitrogen fertilization on crop production. Iowa State University Northern Research and Demonstration Farm Annual Progress report: ISRF01-22.

  • Omay, A. B. 1996. Fate and availability of nitrogen in corn-soybean rotation. Ph.D. Dissertation. Kansas State Univ., Manhattan. (Dissertation Abstract 96-37244).

  • E. A. Paul F. E. Clark (1996) Soil microbiology and biochemistry, 2nd ed Academic Press London, New York

    Google Scholar 

  • E. A. Paul S. Morris J. S. Bohm (2001) The determination of soil C pool sizes and turnover rates: Biophysical fractionation and tracers R. Lal J. M. Kimble R. F. Follett B. A. Stewart (Eds) Assessment methods for soil carbon CRC Press Boca Raton, FL 193–206

    Google Scholar 

  • K. Paustian W. J. Parton J. Persson (1992) ArticleTitleModeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots Soil Science Society of America Journal 56 476–488

    Google Scholar 

  • K. Paustian H. P. Collins E. A. Paul (1997a) Management control on soil carbon E. A. Paul (Eds) Soil organic matter in temperate agroecosystems: Long-term experiments in North America CRC Press Boca Raton, FL 15–50

    Google Scholar 

  • K. Paustian G. I. Agren E. Bosatta (1997b) Modeling litter quality effects on decomposition and soil organic matter dynamics G. Cadisch K. E. Giller (Eds) Driven by nature: Plant litter quality and decomposition CAB International Oxford, UK 313–335

    Google Scholar 

  • Peterson, D. E. 1983. Crop production as affected by cropping sequence and method of seedbed preparation in conservation tillage. M. S. Thesis, Kansas State Univ., Manhattan.

  • D. C. Reicosky M. J. Lindstrom (1993) ArticleTitleEffect of fall tillage method on short term carbon dioxide flux from soil Agronomy Journal 85 1237–1243

    Google Scholar 

  • SAS Institute 1995. Statistical analysis user’s guide: Statistics. Version 6.2. SAS Institute, Cary, NC.

  • D. S. Schimel D. C. Coleman K. A. Horton (1985) ArticleTitleSoil organic matter dynamics in paired rangeland and cropland topsequences in North Dakota Geoderma 36 201–214 Occurrence Handle10.1016/0016-7061(85)90002-3

    Article  Google Scholar 

  • D. S. Schimel J. I. House K. A. Hibbard P. Bousquet P. Ciais P. Peylin B. H. Braswell M. J. Apps D. Baker A. Bondeau J. Canadell G. Churkina W. Cramer A. S. Denning C. B. Field P. Friedlingsten C. Goodale M. Heimann R. A. Houghton J. M. Melillo B. Moore III D. Murdiyarso I. Noble S. W. Pacala I. C. Prentice M. R. Raupach P. J. Rayner R. J. Scholes W. L. Steffen C. Wirth (2001) ArticleTitleRecent patterns and mechanisms of carbon exchange by terrestrial ecosystems Nature 414 169–172 Occurrence Handle10.1038/35102500 Occurrence Handle1:CAS:528:DC%2BD3MXosFaisLo%3D Occurrence Handle11700548

    Article  CAS  PubMed  Google Scholar 

  • Soil Survey Laboratory Staff. 1996. Soil survey laboratory manual. Soil survey investigation report No. 42. USDA-NRCS. U.S. Government Printing Office, Washington, D.C.

  • G. Stanford S. J. Smith (1972) ArticleTitleNitrogen mineralization potentials of soils Soil Science Society of America Proceedings 36 465–472 Occurrence Handle1:CAS:528:DyaE38XktlegtLw%3D

    CAS  Google Scholar 

  • R. D. G. Steel J. H. Torrie (1982) Principles and procedures of statistics McGraw-Hill Inc New York

    Google Scholar 

  • H. Tiessen J. W. B. Stewart J. R. Bettany (1982) ArticleTitleCultivation effects on the amounts and concentrations of carbon, nitrogen, and phosphorus in grassland soils Agronomy Journal 74 831–835

    Google Scholar 

  • J. M. Tisdall J. M. Oades (1982) ArticleTitleOrganic matter and water stable aggregates in soils Soil Science 33 141–163 Occurrence Handle1:CAS:528:DyaL38XlsVels7w%3D

    CAS  Google Scholar 

  • A. J. VandenBygaart X. M. Tang B. D. Kay J. D. Aspinall (2002) ArticleTitleVariability in carbon sequestration potential in no-till soil landscapes of southern Ontario Soil and Tillage Research 65 231–241 Occurrence Handle10.1016/S0167-1987(02)00003-X

    Article  Google Scholar 

  • G. E. Varvel (1994) ArticleTitleRotation and nitrogen fertilization effects on changes in soil carbon and nitrogen Agronomy Journal 86 319–325

    Google Scholar 

  • R. P. Voroney E. A. Paul (1984) ArticleTitleDetermination of Kc and Kn in situ for calibration of the chloroform fumigation-incubation method Soil Biology and Biochemistry 16 9–14 Occurrence Handle10.1016/0038-0717(84)90117-2 Occurrence Handle1:CAS:528:DyaL2cXksFeru7c%3D

    Article  CAS  Google Scholar 

  • D. A. Wardle A. Ghani (1995) ArticleTitleA critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development Soil Biology and Biochemistry 27 1601–1610 Occurrence Handle10.1016/0038-0717(95)00093-T Occurrence Handle1:CAS:528:DyaK2MXhtVSntrfM

    Article  CAS  Google Scholar 

  • C. W. Wood J. H. Edwards (1992) ArticleTitleAgroecosystem management effects on soil carbon and nitrogen Agriculture, Ecosystems and Environment 39 123–138

    Google Scholar 

  • L. E. Woods (1989) ArticleTitleActive organic matter distribution in the surface 15 cm of undisturbed and cultivated soil Biology and Fertility of Soils 8 271–278

    Google Scholar 

  • S. F. Wright A. Upadhyaya J. S. Buyer (1998) ArticleTitleComparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis Soil Biology and Biochemistry 30 1853–1857 Occurrence Handle10.1016/S0038-0717(98)00047-9 Occurrence Handle1:CAS:528:DyaK1cXlt1Sqtbc%3D

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Adam Grant for his endless efforts in the laboratory preparing samples for analysis, as well as for many hours of work with the GC. This research was supported by the U.S. Department of Energy’s National Institute for Global Environmental Change (NIGEC) through the NIGEC Great Plains Regional Center at the University of Nebraska-Lincoln. (DOE Cooperative Agreement No. DE-FC03-90ER610100). Financial support does not constitute an endorsement by DOE of the views expressed in this article. Contribution No. 03-262-J of Kansas Agric. Exp. Stn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Rice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyle, G., Rice, C., Peterson, D. et al. Biologically Defined Soil Organic Matter Pools as Affected by Rotation and Tillage. Environmental Management 33 (Suppl 1), S528–S538 (2004). https://doi.org/10.1007/s00267-003-9160-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-003-9160-z

Navigation