Skip to main content
Log in

The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

The pace-of-life syndrome (i.e., POLS) hypothesis posits that behavioral and physiological traits mediate the trade-off between current and future reproduction. This hypothesis predicts that life history, behavioral, and physiological traits will covary under clearly defined conditions. Empirical tests are equivocal and suggest that the conditions necessary for the POLS to emerge are not always met. We nuance and expand the POLS hypothesis to consider alternative relationships among behavior, physiology, and life history. These relationships will vary with the nature of predation risk, the challenges posed by resource acquisition, and the energy management strategies of organisms. We also discuss how the plastic response of behavior, physiology, and life history to changes in ecological conditions and variation in resource acquisition among individuals determine our ability to detect a fast-slow pace of life in the first place or associations among these traits. Future empirical studies will provide most insights on the coevolution among behavior, physiology, and life history by investigating these traits both at the genetic and phenotypic levels in varying types of predation regimes and levels of resource abundance.

Significance statement

We revisit the pace-of-life syndrome hypothesis, suggesting that behaviors involving a risk of death or injury should coevolve with higher metabolic rates, higher fecundity, faster growth, and heightened mortality rates. Empirical support for this hypothesis is mixed. We show how relaxing some of the assumptions underlying the pace-of-life syndrome hypothesis allows us to consider alternative relationships among behavior, physiology, and life history, and why we fail to meet the predictions posed by the pace-of-life syndrome hypothesis in some populations. Our discussion emphasizes the need to re-integrate the role of the species’ natural history, ecological conditions, and phenotypic plasticity in shaping relationships among behavior, physiology, and life history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adriaenssens B, Johnsson JI (2009) Personality and life-history productivity: consistent or variable associations? Trends Ecol Evol 24:179–180

    Article  PubMed  Google Scholar 

  • Bergeron P, Montiglio P-O, Réale D, Humphries MM, Gimenez O, Garant D (2013) Disruptive viability selection on adult exploratory behaviour in eastern chipmunks. J Evol Biol 26:766–774

    Article  PubMed  CAS  Google Scholar 

  • Bergmüller R, Taborsky M (2010) Animal personality due to social niche specialisation. Trends Ecol Evol 25:504–511

    Article  PubMed  Google Scholar 

  • Bijleveld AI, Massourakis G, van der Marel A, Dekinga A, Spaans B, van Gils JA, Piersma T (2014) Personality drives physiological adjustments and is not related to survival. Proc R Soc Lond B 281:20133135

    Article  Google Scholar 

  • Binder TR, Wilson ADM, Wilson SM, Suskic SD, Godin J-G, Cooke SJ (2016) Is there a pace-of-life syndrome linking boldness and metabolic capacity for locomotion in bluegill sunfish? Anim Behav 121:175–183

    Article  Google Scholar 

  • Biro PA, Adriaenssens B, Sampson P (2014) Individual and sex-specific differences in intrinsic growth rate covary with consistent individual differences in behaviour. J Anim Ecol 83:1186–1195

    Article  PubMed  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    Article  PubMed  Google Scholar 

  • Biro PA, Stamps JA (2010) Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol Evol 25:653–659

    Article  PubMed  Google Scholar 

  • Bridger D, Bonner SJ, Briffa M (2015) Individual quality and personality: bolder males are less fecund in the hermit crab Pagurus bernhardus. Proc R Soc Lond B 282:20142492

    Article  Google Scholar 

  • Brommer JE (2013) On between-individual and residual (co)variances in the study of animal personality: are you willing to take the “individual gambit”? Behav Ecol Sociobiol 67:1027–1032

    Article  Google Scholar 

  • Brommer JE, Karell P, Ahola K, Karstinen T (2014) Residual correlations, and not individual properties, determine a nest defense boldness syndrome. Behav Ecol 25:802–812

    Article  Google Scholar 

  • Brommer JE, Kluen E (2012) Exploring the genetics of nestling personality traits in a wild passerine bird: testing the phenotypic gambit. Ecol Evol 2:3032–3044

    Article  PubMed  PubMed Central  Google Scholar 

  • Careau V, Bininda ORP, Thomas DW, Réale D, Humphries MM (2009) Exploration strategies map along fast-slow metabolic and life-history continua in muroid rodents. Funct Ecol 23:150–156

    Article  Google Scholar 

  • Careau V, Garland T (2012) Performance, personality, and energetics: correlation, causation, and mechanism. Physiol Biochem Zool 85:543–571

    Article  PubMed  Google Scholar 

  • Careau V, Réale D, Garant D, Pelletier F, Speakman JR, Humphries MM (2013) Context-dependent correlation between resting metabolic rate and daily energy expenditure in wild chipmunks. J Exp Biol 216:418–426

    Article  PubMed  Google Scholar 

  • Careau V, Thomas D, Humphries MM, Réale D (2008) Energy metabolism and animal personality. Oikos 117:641–653

    Article  Google Scholar 

  • Careau V, Thomas D, Pelletier F, Turki L, Landry F, Garant D, Réale D (2011) Genetic correlation between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus maniculatus). J Evol Biol 24:2153–2163

    Article  PubMed  CAS  Google Scholar 

  • Charmantier A, Mccleery RH, Cole LR, Perrins C, Kruuk LEB (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–804

    Article  PubMed  CAS  Google Scholar 

  • Cutts CJ, Metcalfe NB, Taylor AC (1998) Aggression and growth depression in juvenile Atlantic salmon: the consequences of individual variation in standard metabolic rate. J Fish Biol 52:1026–1037

    Article  Google Scholar 

  • Dammhahn M, Dingemanse NJ, Niemelä PT, Réale D (2018) Pace-of-life syndromes : a framework for the adaptive integration of behaviour, physiology and life history. Behav Ecol Sociobiol 72:62–70

    Article  Google Scholar 

  • Dammhahn M, Landry-cuerrier M, Réale D, Garant D, Humphries MM (2017) Individual variation in energy-saving heterothermy affects survival and reproductive success. Funct Ecol 31:866–875

    Article  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ, Tinbergen JM (2004) Fitness consequences of avian personalities in a fluctuating environment. Proc R SocLond B 271:847–852

    Article  Google Scholar 

  • Dingemanse NJ, Bouwman KM, van de Pol M, van Overveld T, Patrick SC, Matthysen E, Quinn JL (2012a) Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J Anim Ecol 81:116–126

    Article  PubMed  Google Scholar 

  • Dingemanse NJ, Dochtermann NA, Nakagawa S (2012b) Defining behavioural syndromes and the role of “syndrome deviation” in understanding their evolution. Behav Ecol 66:1543–1548

    Article  Google Scholar 

  • Dingemanse NJ, Wolf M (2013) Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim Behav 85:1031–1039

    Article  Google Scholar 

  • Dixon SM, Baker RL (1987) Effects of fish on feeding and growth of larval Ischnura verticalis (Coenagrionidae: Odonata). Can J Zool 65:2276–2279

    Article  Google Scholar 

  • Dosmann A, Brooks KC, Mateo JM (2015) Evidence for a mechanism of phenotypic integration of behaviour and innate immunity in a wild rodent: implications for animal personality and ecological immunology. Anim Behav 101:179–189

    Article  Google Scholar 

  • Dubuc Messier G, Réale D, Perret P, Charmantier A (2016) Environmental heterogeneity and population differences in blue tits personality traits. Behav Ecol 28:arw148

    Article  Google Scholar 

  • Ellis BJ, Del Giudice M, Shirtcliff EA (2013) Beyond allostatic load: The stress response system as a mechanism of conditional adaptation. Dev Psychopathol 26:1–20

    Article  PubMed  Google Scholar 

  • Fitzpatrick BM Underappreciated consequences of phenotypic plasticity for ecological speciation. Int J Ecol 2012, 2012:32–37

  • Fraser DF, Gilliam JF (1987) Feeding under predation hazard: response of the guppy and Hart’s rivulus from sites with contrasting predation hazard. Behav Ecol Sociobiol 21:203–209

    Article  Google Scholar 

  • Gifford ME, Clay TA, Careau V (2014) Individual (co)variation in standard metabolic rate, feeding rate, and exploratory behavior in wild-caught semiaquatic salamanders. Physiol Biochem Zool 87:384–396

    Article  PubMed  Google Scholar 

  • Glazier DS (2015) Is metabolic rate a universal “pacemaker” for biological processes? Biol Rev 90:377–407

    Article  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA, Spencer HG, Bateson P (2005) Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proc R Soc LondB 272:671–677

    Article  Google Scholar 

  • Guenther A, Trillmich F (2013) Photoperiod influences the behavioral and physiological phenotype during ontogeny. Behav Ecol 24:402–411

    Article  Google Scholar 

  • Heads PA (1986) The costs of reduced feeding due to predator avoidance: potential effects on growth and fitness in Ischnura elegans larvae (Odonata: Zygoptera). Ecol Entomol 11:369–377

    Article  Google Scholar 

  • Hoogenboom MO, Armstrong JD, Groothuis TGG, Metcalfe NB (2013) The growth benefits of aggressive behavior vary with individual metabolism and resource predictability. Behav Ecol 24:253–261

    Article  Google Scholar 

  • Husby A, Nussey DH, Visser ME, Wilson AJ, Sheldon BC, Kruuk LE (2010) Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus major) populations. Evolution 64:2221–2237

    PubMed  Google Scholar 

  • Jablonszky M, Szász E, Krenhardt K, Markó G, Hegyi G, Herényi M, Laczi M, Nagy G, Rosivall B, Szöllősi E, Török J, Garamszegi LZ (2018) Unravelling the relationships between life history, behaviour and condition under the pace-of-life syndomes hypothesis using long-term data from a wild bird. Behav Ecol Sociobiol 72:52

    Article  Google Scholar 

  • Kontiainen P, Pietiäinen H, Huttunen K, Karell P, Kolunen H, Brommer JE (2009) Aggressive ural owl mothers recruit more offspring. Behav Ecol 20:789–796

    Article  Google Scholar 

  • Krebs JR (1980) Optimal foraging, predation risk and territory defense. Ardea 68:83–90

    Google Scholar 

  • Lahti K, Huuskonen H, Laurila A, Piironen J (2012) Metabolic rate and aggressiveness between brown trout populations. Funct Ecol 16:167–174

    Article  Google Scholar 

  • Lima SL (1988) Vigilance and diet selection: a simple example in the dark-eyed junco. Can J Zool 66:593–596

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Luttbeg B, Sih A (2010) Risk, resources and state-dependent adaptive behavioural syndromes. Phil Trans R Soc B 365:3977–3990

    Article  PubMed  PubMed Central  Google Scholar 

  • Macarthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • Martin JGA, Festa-Bianchet M (2011) Age-independent and age-dependent decreases in reproduction of females. Ecol Lett 14:576–581

    Article  PubMed  Google Scholar 

  • Martin LB II, Hasselquist D, Wikelski M (2006) Investment in immune defense is linked to pace of life in house sparrows. Oecologia 147:565–575

    Article  PubMed  Google Scholar 

  • Mathot KJ, Dingemanse NJ (2015) Energetics and behavior: unrequited needs and new directions. Trends Ecol Evol 30:199–206

    Article  PubMed  Google Scholar 

  • Mathot KJ, van den Hout PJ, Piersma T, Kempenaers B, Réale D, Dingemanse NJ (2011) Disentangling the roles of frequency-vs. state-dependence in generating individual differences in behavioural plasticity. Ecol Lett 14:1254–1262

    Article  PubMed  Google Scholar 

  • Mathot KJ, Wright J, Kempenaers B, Dingemanse NJ (2012) Adaptive strategies for managing uncertainty may explain personality-related differences in behavioural plasticity. Oikos 121:1009–1020

    Article  Google Scholar 

  • Miller JRB, Ament JM, Schmitz OJ (2014) Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. J Anim Ecol 83:214–222

    Article  PubMed  Google Scholar 

  • Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Phil Trans R Soc B 363:1635–1645

    Article  PubMed  Google Scholar 

  • Montiglio P-O, Ferrari C, Réale D (2013) Social niche specialization under constraints: personality, social interactions and environmental heterogeneity. Phil Trans R Soc B 368:20120343

    Article  PubMed  PubMed Central  Google Scholar 

  • Montiglio P-O, Garant D, Bergeron P, Dubuc Messier G, Réale D (2014) Pulsed resources and the coupling between life-history strategies and exploration patterns in eastern chipmunks (Tamias striatus). J Anim Ecol 83:720–728

    Article  PubMed  Google Scholar 

  • Müller T, Müller C (2015) Behavioural phenotypes over the lifetime of a holometabolous insect. Front Zool 12:S8

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolaus M, Tinbergen JM, Bouwman KM, Michler SP, Ubels R, Both C, Kempenaers B, Dingemanse NJ (2012) Experimental evidence for adaptive personalities in a wild passerine bird. Proc R Soc LondB 279:4885–4892

    Article  Google Scholar 

  • Niemelä PT, Dingemanse NJ (2017) Individual versus pseudo-repeatability in behaviour: lessons from translocation experiments in a wild insect. J Anim Ecol 86:1033–1043

    Article  PubMed  Google Scholar 

  • Niemelä PT, Dingemanse NJ, Alioravainen N, Vainikka A, Kortet R (2013) Personality pace-of-life hypothesis: testing genetic associations among personality and life history. Behav Ecol 24:935–941

    Article  Google Scholar 

  • Nussey DH, Wilson AJ, Brommer JE (2007) The evolutionary ecology of individual phenotypic plasticity in wild populations. J Evol Biol 20:831–844

    Article  PubMed  CAS  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  PubMed  Google Scholar 

  • Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486

    Article  PubMed  Google Scholar 

  • Promislow DEL, Harvey PH (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals. J Zool 220:417–437

    Article  Google Scholar 

  • Pruitt J, Ferrari M (2011) Intraspecific trait variants determine the nature of interspecific interactions in a habitat-forming species. Ecology 92:1902–1908

    Article  PubMed  Google Scholar 

  • Quinn JL, Cole EF, Patrick SC, Sheldon BC (2011) Scale and state dependence of the relationship between personality and dispersal in a great tit population. J Anim Ecol 80:918–928

    Article  PubMed  Google Scholar 

  • Réale D, Festa-Bianchet M (2003) Predator-induced natural selection on temperament in bighorn ewes. Anim Behav 65:463–470

    Article  Google Scholar 

  • Réale D, Gallant BY, Leblanc M, Festa-Bianchet M (2000) Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Anim Behav 60:589–597

    Article  PubMed  Google Scholar 

  • Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Phil Trans R Soc B 365:4051–4063

    Article  PubMed  PubMed Central  Google Scholar 

  • Réale D, Martin J, Coltman DW, Poissant J, Festa-Bianchet M (2009) Male personality, life-history strategies and reproductive success in a promiscuous mammal. J Evol Biol 22:1599–1607

    Article  PubMed  Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Robinson MR, Wilson AJ, Pilkington JG, Clutton-Brock TH, Pemberton JM, Kruuk LEB (2009) The impact of environmental heterogeneity on genetic architecture in a wild population of soay sheep. Genetics 181:1639–1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roff D, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447

    Article  PubMed  CAS  Google Scholar 

  • Royauté R, Berdal MA, Garrison CR, Dochtermann NA (2018) Paceless life? A meta-analysis of the pace-of-life syndrome hypothesis. Behav Ecol Sociobiol 72:64

    Article  Google Scholar 

  • Royauté R, Greenlee K, Baldwin M, Dochtermann NA (2015) Behaviour, metabolism and size: phenotypic modularity or integration in Acheta domesticus? Anim Behav 110:163–169

    Article  Google Scholar 

  • Santostefano F, Wilson AJ, Niemelä PT, Dingemanse NJ (2017) Behavioural mediators of genetic life-history trade-offs: a test of the pace-of-life syndrome hypothesis in field crickets. Proc R Soc Lond B 284:20171567

    Article  Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163

    Article  Google Scholar 

  • Speakman JR (1997) Factors influencing the daily energy expenditure of small mammals. Proc Nutr Soc 56:119–1136

    Article  Google Scholar 

  • Stamps JA (2007) Growth-mortality tradeoffs and “personality traits” in animals. Ecol Lett 10:355–363

    Article  PubMed  Google Scholar 

  • Stearns SC (1983) The influence of size and phylogeny on patterns of cavariation among life-history traits in the mammals. Oikos 41:173–187

    Article  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  • Sultan SE, Spencer HG (2002) Metapopulation structure favors plasticity over local adaptation. Am Nat 160:271–283

    Article  PubMed  Google Scholar 

  • Thomas DW, Dorais M, Bergeron J (1990) Winter energy budget and cost of arousals for hibernating little brown bats, Myotis lucifugus. J Mammal 71:475–479

    Article  Google Scholar 

  • Tieleman B, Williams J, Ricklefs R, Klasing K (2005) Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birds. Proc R Soc Lond B 272:1715–1720

    Article  Google Scholar 

  • Timonin ME, Carrière CJ, Dudych AD, Latimer JGW, Unruh ST, Willis CKR (2011) Individual differences in the behavioural responses of meadow voles to an unfamiliar environment are not correlated with variation in resting metabolic rate. J Zool 284:198–205

    Article  Google Scholar 

  • Turbill C, Bieber C, Ruf T (2011) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc R Soc Lond B 278:3355–3363

    Article  Google Scholar 

  • Urszán TJ, Török J, Hettyey A, Garamszegi LZ, Herczeg G (2015) Behavioural consistency and life history of Rana dalmatina tadpoles. Oecologia 178:129–140

    Article  PubMed  Google Scholar 

  • Vaanholt LM, de Jong B, Garland T, Daan S, Visser GH (2007) Behavioural and physiological responses to increased foraging effort in male mice. J Exp Biol 210:2013–2024

    Article  PubMed  Google Scholar 

  • van Noordwijk AJ, de Jong G (1986) Acquisition and allocation of resources: their influence on variation in life history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • Vuarin P, Dammhahn M, Henry P (2013) Individual flexibility in energy saving: body size and condition constrain torpor use. Funct Ecol 27:793–799

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662

    Article  PubMed  Google Scholar 

  • West-Eberhard M (2003) Developmental plasticity and evolution. Oxford University Press. In: Oxford

    Google Scholar 

  • White SJ, Kells TJ, Wilson AJ (2016) Metabolism, personality and pace of life in the Trinidadian guppy, Poecilia reticulata. Behaviour 153:1517–1543

    Article  Google Scholar 

  • Wiersma P, Verhulst S (2005) Effects of intake rate on energy expenditure, somatic repair and reproduction of zebra finches. J Exp Biol 208:4091–4098

    Article  PubMed  Google Scholar 

  • Wikelski M, Ricklefs RE (2001) The physiology of life histories. Trends Ecol Evol 16:479–481

    Article  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    Article  PubMed  CAS  Google Scholar 

  • Ydenberg RC, Dill LM (1986) The economics of fleeing from predators. Adv Stud Behav 16:229–249

    Article  Google Scholar 

  • Zylberberg M, Klasing KC, Hahn TP (2014) In house finches, Haemorhous mexicanus, risk takers invest more in innate immune function. Anim Behav 89:115–122

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants of the two workshops Towards a general theory of the pace-of-life syndrome, held in Hannover in 2015 and 2016, for inspiring discussions as well as the Volkswagen Stiftung (Az. 89905) for generously funding these workshops. We thank Jonathan Wright and coauthors for providing us an unpublished manuscript. Members of DR’s laboratory provided constructive comments during the preparation of this manuscript. We also thank two anonymous reviewers for their comments on the initial version of this manuscript.

Funding

POM was supported by post-doctoral fellowships from the Fonds de Recherche Québec: Nature et Technologies (FRQNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC). GDM was supported by a FRQNT and a NSERC doctoral fellowship. MD was supported by a DFG research fellowship (DA 1377/2-1) and DFG return fellowship (DA 1377/2-2). This research was supported by an NSERC Discovery grant to DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Olivier Montiglio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. T. Niemelä

This article is a contribution to the Topical Collection Pace-of-life syndrome: a framework for the adaptive integration of behaviour, physiology and life-history - Guest Editors: Melanie Dammhahn, Niels J. Dingemanse, Petri T. Niemelä, Denis Réale

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiglio, PO., Dammhahn, M., Dubuc Messier, G. et al. The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum. Behav Ecol Sociobiol 72, 116 (2018). https://doi.org/10.1007/s00265-018-2526-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-018-2526-2

Keywords

Navigation