Skip to main content
Log in

Efficiency and robustness of ant colony transportation networks

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Efficient and robust transportation networks are key to the effectiveness of many natural systems. In polydomous ant colonies, which consist of two or more spatially separated but socially connected nests, resources must be transported between nests. In this study, we analyse the network structure of the inter-nest trails formed by natural polydomous ant colonies. In contrast to previous laboratory studies, the natural colonies in our study do not form minimum spanning tree networks. Instead the networks contain extra connections, suggesting that in natural colonies, robustness may be an important factor in network construction. Spatial analysis shows that nests are randomly distributed within the colony boundary and we find nests are most likely to connect to their nearest neighbours. However, the network structure is not entirely determined by spatial associations. By showing that the networks do not minimise total trail length and are not determined only by spatial associations, the results suggest that the inter-nest networks produced by ant colonies are influenced by previously unconsidered factors. We show that the transportation networks of polydomous ant colonies balance trail costs with the construction of networks that enable efficient transportation of resources. These networks therefore provide excellent examples of effective biological transport networks which may provide insight into the design and management of transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen AN, Patel AD (1994) Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forager abundance of other species. Oecologia 98:15–24. doi:10.1007/bf00326085

    Article  Google Scholar 

  • Aron S, Deneubourg JL, Goss S, Pasteels JM (1990) Functional self-organisation illustrated by internest traffic in ants: the case of the argentine ant. In: Alt W, Hoffman G (eds) Biological motion. Springer, Berlin, pp 533–547

    Chapter  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42

    Google Scholar 

  • Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD (2007) Biological solutions to transport network design. Proc R Soc B Biol Sci 274:2307

    Article  Google Scholar 

  • Beekman M, Sumpter DJT, Ratnieks FLW (2001) Phase transition between disordered and ordered foraging in Pharaoh's ants. Proc Natl Acad Sci U S A 98:9703–9706. doi:10.1073/pnas.161285298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    Article  Google Scholar 

  • Bonnet E, Peer YV (2002) zt: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Google Scholar 

  • Boudjema G, Lemperiere G, Deschamps-Cottin M, George Molland D (2006) Analysis and nonlinear modeling of the mound-building ant Formica lugubris spatial multi-scale dynamic in a larch-tree stand of the southern French Alps. Ecol Model 190:147–158

    Article  Google Scholar 

  • Buczkowski G, Bennett G (2008) Seasonal polydomy in a polygynous supercolony of the odorous house ant, Tapinoma sessile. Ecol Entomol 33:780–788. doi:10.1111/j.1365-2311.2008.01034.x

    Google Scholar 

  • Buhl J, Gautrais J, Solé RV, Kuntz P, Valverde S, Deneubourg JL, Theraulaz G (2004) Efficiency and robustness in ant networks of galleries. Eur Phys J B Condens Matter Complex Syst 42:123–129

    Article  CAS  Google Scholar 

  • Buhl J, Gautrais J, Reeves N, Solé RV, Valverde S, Kuntz P, Theraulaz G (2006) Topological patterns in street networks of self-organized urban settlements. Eur Phys J B Condens Matter Complex Syst 49:513–522. doi:10.1140/epjb/e2006-00085-1

    Article  CAS  Google Scholar 

  • Buhl J, Hicks K, Miller E, Persey S, Alinvi O, Sumpter D (2009) Shape and efficiency of wood ant foraging networks. Behav Ecol Sociobiol 63:451–460. doi:10.1007/s00265-008-0680-7

    Article  Google Scholar 

  • Cerda X, Retana J, Haro A (1994) Social carrying between nests in polycalic colonies of the monogynoun ant Cataglyphis iberica (Hymenoptera: Formicidae). Sociobiology 23(3):215–231

    Google Scholar 

  • Cerdá X, Dahbi A, Retana J (2002) Spatial patterns, temporal variability, and the role of multi-nest colonies in a monogynous Spanish desert ant. Ecol Entomol 27:7–15. doi:10.1046/j.0307-6946.2001.00386.x

    Article  Google Scholar 

  • Cherix D (1980) Note preliminaire sur la structure, la phenologie et le regime alimentaire d'une super-colonie de Formica lugubris Zett. Insect Soc 27:226–236

    Article  Google Scholar 

  • Cook Z, Franks DW, Robinson EJH (2013) Exploration versus exploitation in polydomous ant colonies. J Theor Biol 323:49–56. doi:10.1016/j.jtbi.2013.01.022

    Article  PubMed  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems: 1695

  • Dahbi A, Lenoir A (1998) Nest separation and the dynamics of the Gestalt odor in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae). Behav Ecol Sociobiol 42:349–355

    Article  Google Scholar 

  • Debout G, Schatz B, Elias M, McKey D (2007) Polydomy in ants: what we know, what we think we know, and what remains to be done. Biol J Linn Soc 90:319–348

    Article  Google Scholar 

  • Dillier FX, Wehner R (2004) Spatio-temporal patterns of colony distribution in monodomous and polydomous species of North African desert ants, genus Cataglyphis. Insect Soc 51:186–196

    Article  Google Scholar 

  • Elias M, Rosengren R, Sundstrom L (2005) Seasonal polydomy and unicoloniality in a polygynous population of the red wood ant Formica truncorum. Behav Ecol Sociobiol 57:339–349. doi:10.1007/s00265-004-0864-8

    Article  Google Scholar 

  • Federle W, Maschwitz U, Fiala B (1998) The two-partner ant-plant system of Camponotus (Colobopsis) sp. 1 and Macaranga puncticulata (Euphorbiaceae): natural history of the exceptional ant partner. Insect Soc 45:1–16. doi:10.1007/s000400050064

    Article  Google Scholar 

  • Gastner MT, Newman MEJ (2006a) Shape and efficiency in spatial distribution networks. J Stat Mech Theory Exp 2006, P01015

    Article  Google Scholar 

  • Gastner MT, Newman MEJ (2006b) The spatial structure of networks. Eur Phys J B Condens Matter Complex Syst 49:247–252. doi:10.1140/epjb/e2006-00046-8

    Article  CAS  Google Scholar 

  • Guimera R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities' global roles. Proc Natl Acad Sci 102:7794–7799

    Article  CAS  PubMed  Google Scholar 

  • Heller NE, Gordon DM (2006) Seasonal spatial dynamics and causes of nest movement in colonies of the invasive Argentine ant (Linepithema humile). Ecol Entomol 31:499–510. doi:10.1111/j.1365-2311.2006.00806.x

    Article  Google Scholar 

  • Heller NE, Ingram KK, Gordon DM (2008) Nest connectivity and colony structure in unicolonial Argentine ants. Insect Soc 55:397–403. doi:10.1007/s00040-008-1019-0

    Article  Google Scholar 

  • Herbers JM (1986) Nest site limitation and facultative polygyny in the ant Leptothorax longispinosus. Behav Ecol Sociobiol 19:115–122. doi:10.1007/bf00299946

    Article  Google Scholar 

  • Herbers JM (1989) Community structure in north temperate ants: temporal and spatial variation. Oecologia 81:201–211. doi:10.1007/bf00379807

    Google Scholar 

  • Holt J (1990) Observations on the relationships between meat ants and termites in tropical Australia. J Trop Ecol 6:379–382

    Article  Google Scholar 

  • Holway DA, Case TJ (2000) Mechanisms of dispersed central-place foraging in polydomous colonies of the Argentine ant. Anim Behav 59:433–441

    Article  PubMed  Google Scholar 

  • Katifori E, Szöllősi GJ, Magnasco MO (2010) Damage and fluctuations induce loops in optimal transport networks. Phys Rev Lett 104:048704

    Article  PubMed  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  CAS  PubMed  Google Scholar 

  • Latora V, Marchiori M (2002) Is the Boston subway a small-world network? Phys A Stat Mech Appl 314:109–113. doi:10.1016/s0378-4371(02)01089-0

    Article  Google Scholar 

  • Latty T, Ramsch K, Ito K, Nakagaki T, Sumpter DJT, Middendorf M, Beekman M (2011) Structure and formation of ant transportation networks. J R Soc Interface 8:1298–1306

    Article  PubMed Central  PubMed  Google Scholar 

  • McIver JD (1991) Dispersed central place foraging in Australian meat ants. Insect Soc 38:129–137. doi:10.1007/bf01240963

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Hara M (2004) Smart network solutions in an amoeboid organism. Biophys Chem 107:1–5. doi:10.1016/s0301-4622(03)00189-3

    Article  CAS  PubMed  Google Scholar 

  • Perna A, Valverde S, Gautrais J, Jost C, Solé R, Kuntz P, Theraulaz G (2008) Topological efficiency in three-dimensional gallery networks of termite nests. Phys A Stat Mech Appl 387:6235–6244

    Article  Google Scholar 

  • Pfeiffer M, Linsenmair KE (1998) Polydomy and the organization of foraging in a colony of the Malaysian giant ant Camponotus gigas (Hym./Form.). Oecologia 117:579–590

    Article  Google Scholar 

  • Pfeiffer M, Linsenmair K (2000) Contributions to the life history of the Malaysian giant ant Camponotus gigas (Hymenoptera, Formicidae). Insect Soc 47:123–132

    Article  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasband WS (1997–2012) ImageJ. U.S. National Institutes of Health: Bethesda, MD, USA

  • Ripley BD (1976) The second-order analysis of stationary point processes. J App Prob 13:255–266

    Article  Google Scholar 

  • Ripley BD, Rasson JP (1977) Finding the edge of a Poisson forest. J Appl Probab 14:483–491

    Article  Google Scholar 

  • Robinson EJH, Richardson T, Sendova-Franks A, Feinerman O, Franks N (2009) Radio tagging reveals the roles of corpulence, experience and social information in ant decision making. Behav Ecol Sociobiol 63:627–636. doi:10.1007/s00265-008-0696-z

    Article  Google Scholar 

  • Santini G, Ramsay PM, Tucci L, Ottonetti L, Frizzi F (2011) Spatial patterns of the ant Crematogaster scutellaris in a model ecosystem. Ecol Entomol 36:625–634. doi:10.1111/j.1365-2311.2011.01306.x

    Article  Google Scholar 

  • Sen P, Dasgupta S, Chatterjee A, Sreeram PA, Mukherjee G, Manna SS (2003) Small-world properties of the Indian railway network. Phys Rev E 67:036106

    Article  Google Scholar 

  • Snyder LE, Herbers JM (1991) Polydomy and sexual allocation ratios in the ant Myrmica punctiventris. Behav Ecol Sociobiol 28:409–415

    Article  Google Scholar 

  • Southworth D, He XH, Swenson W, Bledsoe C, Horwath W (2005) Application of network theory to potential mycorrhizal networks. Mycorrhiza 15:589–595

    Article  CAS  PubMed  Google Scholar 

  • Tero A, Takagi S, Saigusa T, Ito K, Bebber DP, Fricker MD, Yumiki K, Kobayashi R, Nakagaki T (2010) Rules for biologically inspired adaptive network design. Sci Signal 327:439

    CAS  Google Scholar 

  • Traniello JFA, Levings SC (1986) Intra- and intercolony patterns of nest dispersion in the ant Lasius neoniger: correlations with territoriality and foraging ecology. Oecologia 69:413–419

    Article  Google Scholar 

  • van Wilgenburg E, Elgar M (2007) Colony structure and spatial distribution of food resources in the polydomous meat ant Iridomyrmex purpureus. Insect Soc 54:5–10. doi:10.1007/s00040-007-0903-3

    Article  Google Scholar 

  • Wiernasz DC, Cole BJ (1995) Spatial distribution of Pogonomyrmex occidentalis: recruitment, mortality and overdispersion. J Anim Ecol 64:519–527

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments on the manuscript. Z Cook is supported by a NERC studentship. EJH Robinson acknowledges funding from the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Cook.

Additional information

Communicated by D. Naug

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 303 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, Z., Franks, D.W. & Robinson, E.J.H. Efficiency and robustness of ant colony transportation networks. Behav Ecol Sociobiol 68, 509–517 (2014). https://doi.org/10.1007/s00265-013-1665-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-013-1665-8

Keywords

Navigation