Skip to main content
Log in

Mind the gap: the ratio of yolk androgens and antioxidants varies between sons and daughters dependent on paternal attractiveness

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Females are expected to partition resources between offspring in a context-dependent way to maximise total fitness returns from a reproductive attempt. Female zebra finches (Taeniopygia guttata) vary the allocation of yolk androgens and antioxidants among offspring. Importantly, the balance between androgens and antioxidants in yolks may be more important than their independent absolute amounts in terms of fitness consequences for developing young. Therefore, we tested whether the relative allocation of these two resources in yolks varies according to either the Trivers–Willard, positive or compensatory maternal investment hypothesis. We manipulated male attractiveness using coloured leg bands (red-banded males appear attractive; green-banded males, unattractive) and measured yolk androgens and antioxidants in each egg, egg sex, clutch sex ratio and female condition. While female zebra finches manipulated the balance of androgens and antioxidants within and between clutches in response to mate attractiveness, offspring sex and their own condition, they did not do so in a way that consistently followed any of the hypotheses. Mothers paired with unattractive males allocated a larger antioxidant/androgen ratio to daughters than sons. This pattern was reversed when paired to an attractive male; sons received a larger antioxidant/androgen ratio than daughters. We also found offspring sex ratio decreased with increasing female condition for unattractive males, but not for attractive males. However, without knowing the fitness consequences of the balance of different egg constituents, it is difficult to interpret the patterns consistently in terms of the Trivers–Willard, compensatory and positive investment hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso-Alvarez C, Bertrand S, Devevey G, Prost J, Faivre B, Sorci G (2004) Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett 7:363–368

    Article  Google Scholar 

  • Birkhead TR, Hunter FM, Pellatt JE (1989) Sperm competition in the zebra finch, Taeniopygia-guttata. Anim Behav 38:935–950. doi:10.1016/s0003-3472(89)80135-6

  • Birkhead TR, Burke T, Zann R, Hunter FM, Krupa AP (1990) Extra-pair paternity and intraspecific brood parasitism in wild zebra finches Taeniopygia guttata, revealed by DNA fingerprinting. Behav Ecol Sociobiol 27:315–324

    Article  Google Scholar 

  • Blount JD, Houston DC, Surai PF, Møller AP (2004) Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proc R Soc Lond B 271:S79–S81

    Article  CAS  Google Scholar 

  • Bolund E, Schielzeth H, Forstmeier W (2009) Compensatory investment in zebra finches: females lay larger eggs when paired to sexually unattractive males. Proc R Soc Lond B 276:707–715

    Article  Google Scholar 

  • Boncoraglio G, Groothuis TGG, von Engelhardt N (2011) Differential maternal testosterone allocation among siblings benefits both mother and offspring in the zebra finch Taeniopygia guttata. Am Nat 178:64–74

    Article  PubMed  Google Scholar 

  • Burley N (1981) Sex ratio manipulation and selection for attractiveness. Science 211:721–722

    Article  PubMed  CAS  Google Scholar 

  • Burley N (1986) Sex-ratio manipulation in color-banded populations of zebra finches. Evolution 40:1191–1206

    Article  Google Scholar 

  • Burley N (1988) The differential-allocation hypothesis: an experimental test. Am Nat 132:611–628

    Article  Google Scholar 

  • Cucco M, Guasco B, Malacarne G, Ottonelli R, Tanvez A (2008) Yolk testosterone levels and dietary carotenoids influence growth and immunity of grey partridge chicks. Gen Comp Endocrinol 156:418–425

    Article  PubMed  CAS  Google Scholar 

  • Cunningham EJA, Russell A (2000) Egg investment is influenced by male attractiveness in the mallard. Nature 404:74–77

    Article  PubMed  CAS  Google Scholar 

  • Duffy DL, Bentley GE, Drazen DL, Ball GF (2000) Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav Ecol 11:654–662

    Article  Google Scholar 

  • Eising CM, Groothuis TGG (2003) Yolk androgens and begging behaviour in black-backed gull chicks: an experimental field study. Anim Behav 66:1027–1034

    Article  Google Scholar 

  • Gil D (2008) Hormones in avian eggs: a review. Adv Study Behav 38:337–398

    Article  Google Scholar 

  • Gil D, Graves J, HazonN WA (1999) Male attractiveness and differential testosterone investment in zebra finch eggs. Science 286:126–128

    Article  PubMed  CAS  Google Scholar 

  • Gil D, Leboucher G, Lacroix A, Cue R, Kreutzer M (2004) Female canaries produce eggs with greater amounts of testosterone when exposed to preferred male song. Horm Behav 45:64–70

    Article  PubMed  CAS  Google Scholar 

  • Gilbert L, Rutstein AN, Hazon N, Graves JA (2005) Sex-biased investment in yolk androgens depends on female quality and laying order in zebra finches (Taeniopygia guttata). Naturwissenschaften 92:178–181

    Article  PubMed  CAS  Google Scholar 

  • Gilbert L, Williamson KA, Hazon N, Graves JA (2006) Maternal effects due to male attractiveness affect offspring development in the zebra finch. Proc R Soc Lond B 273:1765–1771

    Article  CAS  Google Scholar 

  • Gilbert L, Bulmer E, Arnold KE, Graves JA (2007) Yolk androgens and embryo sex: maternal effects or confounding factors? Horm Behav 51:231–238

    Article  PubMed  CAS  Google Scholar 

  • Gilbert L, Williamson KA, Graves JA (2011) Male attractiveness regulates offspring fecundity non-genetically via maternal investment. Proc R Soc Lond B. doi:10.1098/rspb.2011.0962

  • Gowaty PA, Anderson WW, Bluhm CK, Drickamer LC, Kim YK, Moore AJ (2007) The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. Proc Natl Acad Sci USA 104:15023–15027

    Article  PubMed  CAS  Google Scholar 

  • Griffith SC, Holleley CE, Mariette MM, Pryke SR, Svedin N (2010) Low level of extra pair parentage in wild zebra finches. Anim Behav 79:261–264

    Article  Google Scholar 

  • Groothuis TGG, Muller W, von Engelhardt N, Carere C, Eising C (2005) Maternal hormones as a tool to adjust offspring phenotype in avian species. Neurosci Biobehav Rev 29:329–352

    Article  PubMed  CAS  Google Scholar 

  • Groothuis TGG, Eising CM, Blount JD, Surai P, Apanius V, Dijkstra C, Muller W (2006) Multiple pathways of maternal effects in black-headed gull eggs: constraint and adaptive compensatory adjustment. J Evol Biol 19:1304–1313

    Article  PubMed  CAS  Google Scholar 

  • Hargitai R, Arnold KE, Herenyi M, Prechl J, Torok J (2009) Egg composition in relation to social environment and maternal physiological condition in the collared flycatcher. Behav Ecol Sociobiol 63:869–882

    Article  Google Scholar 

  • Harris WE, Uller T (2009) Reproductive investment when mate quality varies: differential allocation versus reproductive compensation. Phil Trans R Soc B-Bio Sci 364:1039–1048

    Article  Google Scholar 

  • Hunt S, Cuthill IC, Swaddle JP, Bennett ATD (1997) Ultraviolet vision and band-colour preferences in female zebra finches, Taeniopygia guttata. Anim Behav 54:1383–1392

    Article  PubMed  Google Scholar 

  • Ketterson ED, Nolan V (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25

    Article  Google Scholar 

  • Kilner R (1998) Primary and secondary sex ratio manipulation by zebra finches. Anim Behav 56:155–164

    Article  PubMed  Google Scholar 

  • Lipar JL, Ketterson ED (2000) Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proc R Soc Lond B 267:2005–2010

    Article  CAS  Google Scholar 

  • Martins TLF (2004) Sex-specific growth rates in zebra finch nestlings: a possible mechanism for sex ratio adjustment. Behav Ecol 15:174–180

    Article  Google Scholar 

  • Monaghan P, Nager RG (1997) Why don’t birds lay more eggs? Trends Ecol Evol 12:270–274

    Article  PubMed  CAS  Google Scholar 

  • Müller W, Boonen S, Groothuis TGG, Eens M (2010) Maternal yolk testosterone in canary eggs: toward a better understanding of mechanisms and function. Behav Ecol 21:493–500

    Article  Google Scholar 

  • Navara KJ, Hill GE, Mendonca MT (2005) Variable effects of yolk androgens on growth, survival, and immunity in eastern bluebird nestlings. Physiol Biochem Zool 78:570–578

    Article  PubMed  CAS  Google Scholar 

  • Navara KJ, Hill GE, Medonca MT (2006a) Yolk androgen deposition as a compensatory strategy. Behav Ecol Sociobiol 60:392–398

    Article  Google Scholar 

  • Navara KJ, Badyaev AV, Mendonca MT, Hill GE (2006b) Yolk antioxidants vary with male attractiveness and female condition in the house finch (Carpodacus mexicanus). Physiol Biochem Zool 79:1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Petrie M, Williams A (1993) Peahens lay more eggs for peacocks with larger trains. Proc R Soc Lond B 251:127–131

    Article  Google Scholar 

  • Royle NJ, Surai PF, Hartley IR (2001) Maternally derived androgens and antioxidants in bird eggs: complementary but opposing effects? Behav Ecol 12:381–385

    Article  Google Scholar 

  • Rutstein AN, Gilbert L, Slater PJB, Graves JA (2004a) Mate attractiveness and primary resource allocation in the zebra finch. Anim Behav 68:1087–1094

    Article  Google Scholar 

  • Rutstein AN, Slater PJB, Graves JA (2004b) Diet quality and resource allocation in the zebra finch. Proc R Soc Lond B 271:S286–S289

    Article  Google Scholar 

  • Rutstein AN, Gilbert L, Slater PJB, Graves JA (2005a) Sex-specific patterns of yolk androgen allocation depend on maternal diet in the zebra finch. Behav Ecol 16:62–69

    Article  Google Scholar 

  • Rutstein AN, Gorman HE, Arnold KE, Gilbert L, Orr KJ, Adam A, Nager R, Graves JA (2005b) Sex allocation in response to paternal attractiveness in the zebra finch. Behav Ecol 16:763–769

    Article  Google Scholar 

  • Safran R, Pilz K, McGraw K, Correa S, Schwabl H (2008) Are yolk androgens and carotenoids in barn swallow eggs related to parental quality? Behav Ecol Sociobiol 62:427–438

    Article  Google Scholar 

  • Saino N, Bertacche V, Ferrari RP, Martinelli R, Møller AP, Stradi R (2002) Carotenoid concentration in barn swallow eggs is influenced by laying order, maternal infection and paternal ornamentation. Proc R Soc Lond B: 269:1729–1733

    Article  CAS  Google Scholar 

  • Saino N, Ferrari R, Romano M, Martinelli R, Møller AP (2003) Experimental manipulation of egg carotenoids affects immunity of barn swallow nestlings. Proc R Soc Lond B 270:2485–2489

    Article  Google Scholar 

  • Sandell MI, Tobler M, Hasselquist D (2009) Yolk androgens and the development of avian immunity: an experiment in jackdaws (Corvus monedula). J Exp Biol 212:815–822

    Article  PubMed  Google Scholar 

  • Schwabl H (1993) Yolk is a source of maternal testosterone for developing birds. Proc Natl Acad Sci USA 90:11446–11450

    Article  PubMed  CAS  Google Scholar 

  • Schwabl H (1996) Maternal testosterone in avian eggs enhances postnatal growth. Comp Biochem Physiol 114:271–276

    Article  CAS  Google Scholar 

  • Sheldon BC (2000) Differential allocation: tests, mechanisms and implications. Trends Ecol Evol 15:397–402

    Article  PubMed  Google Scholar 

  • Sockman KW, Schwabl H (2000) Yolk androgens reduce offspring survival. Proc R Soc Lond B 267:1451–1456

    Article  CAS  Google Scholar 

  • Surai PF (2002) Natural antioxidants in avian nutrition and reproduction. Nottingham University Press, Nottingham

    Google Scholar 

  • Tobler M, Sandell MI (2009) Sex-specific effects of prenatal testosterone on nestling plasma antioxidant capacity in the zebra finch. J Exp Biol 212:89–94

    Article  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary sex ratio of offspring. Science 179:90–92

    Article  PubMed  CAS  Google Scholar 

  • Verboven N, Monaghan P, Evans DM et al (2003) Maternal condition, yolk androgens and offspring performance: a supplemental feeding experiment in the lesser black-backed gull (Larus fuscus). Proc R Soc Lond B 270:2223–2232

    Article  Google Scholar 

  • von Engelhardt N, Carere C, Dijkstra C, Groothuis TGG (2006) Sex-specific effects of yolk testosterone on survival, begging and growth of zebra finches. Proc R Soc Lond B 273:65–70

    Article  Google Scholar 

  • von Schantz T, Bensch S, Grahn M et al (1999) Good genes, oxidative stress and condition-dependent sexual signals. Proc R Soc Lond B 266:1–12

    Article  Google Scholar 

  • Williams GC (1966) Adaptation and natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Williamson KA, Surai PF, Graves JA (2006) Yolk antioxidants and mate attractiveness in the Zebra Finch. Funct Ecol 20:354–359

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Tanya Sneddon, Alan Wells, Bill Mullen, Rita Hargitai and Steve Larcombe for help in the lab and Isobel Maynard for care of the birds. ECP was funded by a Natural Environment Research Council studentship.

Ethical standards

This research was conducted under Home Office license to JG and complies with the UK Home Office regulations for animal experimentation.

Conflicts of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Graves.

Additional information

Communicated by T. Bakker

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pariser, E.C., Gilbert, L., Hazon, N. et al. Mind the gap: the ratio of yolk androgens and antioxidants varies between sons and daughters dependent on paternal attractiveness. Behav Ecol Sociobiol 66, 519–527 (2012). https://doi.org/10.1007/s00265-011-1300-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-011-1300-5

Keywords

Navigation