Skip to main content
Log in

Inbreeding and caste-specific variation in immune defence in the ant Formica exsecta

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Social insects are a widespread and ecologically dominant group. Reproductive division of labour among the females in the colonies is a key trait for their success, but at the same time, it creates dense aggregations of relatives which may promote the spread of disease in the colonies. Hence, the appropriate regulation of immune defence is crucial for the well-being of a colony. Inbreeding may disturb this process through reduced resistance or by impairing the colony’s ability to regulate the responses. We tested the effect of inbreeding and the within-colony differences in the encapsulation response between the two female castes of the ant Formica exsecta. New reproductive females (gynes) born in more inbred colonies, and being more inbred themselves, showed an elevated immune response whereas inbreeding had no effect on worker response. Furthermore, the immune response exhibited by gynes was lower than that of workers and was not dependent on their body size whereas the worker response increased with body size. The elevated response is likely to reflect genetic stress caused by inbreeding, which in turn may compromise colony founding and longevity. Indeed, eliciting a high immune response in itself might not be adaptive. Our results show that the regulation of the expression of immunity differs between female castes despite their similar genetic make-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahtiainen JJ, Alatalo RV, Kortet R, Rantala MJ (2004) Sexual advertisement and immune function in an arachnid species (Lycosidae). Behav Ecol 15:602–606

    Article  Google Scholar 

  • Ahtiainen JJ, Alatalo RV, Kortet R, Rantala MJ (2005) A trade-off between sexual signalling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. J Evol Biol 18:985–991

    Article  PubMed  CAS  Google Scholar 

  • Alexander RD (1974) The evolution of social behavior. Ann Rev Ecolog Syst 5:325–383

    Article  Google Scholar 

  • Aparicio JM, Ortego J, Cordero PJ (2006) What should we weigh to estimate heterozygosity, alleles or loci? Mol Ecol 15:4659–4665

    Article  PubMed  CAS  Google Scholar 

  • Ayroles JF, Hughes KA, Rowe KC, Reedy MM, Rodriguez-Zas SL, Drnevich JM, CáCeres CE, Paige KN (2009) A genomewide assessment of inbreeding depression: gene number, function, and mode of action. Cons Biol 23:920–930

    Article  Google Scholar 

  • Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154

    Article  CAS  Google Scholar 

  • Baer B, Armitage SAO, Boomsma JJ (2006) Sperm storage induces an immunity cost in ants. Nature 441:872–875

    Article  PubMed  CAS  Google Scholar 

  • Bhatkar A, Whitcomb WH (1970) Artificial diet for rearing various species of ants. Flo Entomol 53:229–232

    Article  Google Scholar 

  • Bocher A, Tirard C, Doums C (2007) Phenotypic plasticity of immune defence linked with foraging activity in the ant Cataglyphis velox. J Evol Biol 20:2228–2234

    Article  PubMed  CAS  Google Scholar 

  • Boete C, Paul REL, Koella JC (2002) Reduced efficacy of the immune melanization response in mosquitoes infected by malaria parasites. Parasitology 125:93–98

    Article  PubMed  CAS  Google Scholar 

  • Bouletreau M (1986) The genetic and coevolutionary interaction between parasitoids and their hosts. In: Waage J, Greathead D (eds) Insect parasitoids. Academic, London, pp 169–200

    Google Scholar 

  • Brown MJF, Moret Y, Schmid-Hempel P (2003) Activation of host constitutive immune defence by an intestinal trypanosome parasite of bumble bees. Parasitology 126:253–260

    Article  PubMed  CAS  Google Scholar 

  • Calleri DV, Reid EM, Rosengaus RB, Vargo EL, Traniello JFA (2006a) Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc R Soc B 273:2633–2640

    Article  PubMed  Google Scholar 

  • Calleri DV, Rosengaus RB, Traniello JFA (2006b) Trade-offs between immunity and reproduction in the dampwood termite Zootermopsis angusticollis. Insect Soc 53:204–211

    Article  Google Scholar 

  • Castella G, Christe P, Chapuisat M (2009) Mating triggers dynamic immune regulations in wood ant queens. J Evol Biol 22:564–570

    Article  PubMed  CAS  Google Scholar 

  • Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc R Soc B 274:2013–2017

    Article  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10:783–796

    Article  PubMed  CAS  Google Scholar 

  • Christe P, Oppliger A, Bancalà F, Castella G, Chapuisat M (2003) Evidence for collective medication in ants. Ecol Lett 6:19–22

    Article  Google Scholar 

  • Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Phil Trans R Soc B 364:129–142

    Article  PubMed  Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702

    Article  PubMed  CAS  Google Scholar 

  • Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270

    Article  PubMed  Google Scholar 

  • Doums C, Schmid-Hempel P (2000) Immunocompetence in workers of a social insect, Bombus terrestris L, in relation to foraging activity and parasitic infection. Can J Zool 78:1060–1066

    Article  Google Scholar 

  • Fortelius W, Rosengren R, Cherix D, Chautems D (1993) Queen recruitment in a highly polygynous supercolony of Formica lugubris (Hymenoptera, Formicidae). Oikos 67:193–200

    Article  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    Article  PubMed  CAS  Google Scholar 

  • Galloway TS, Depledge MH (2001) Immunotoxicity in invertebrates: measurement and ecotoxicological relevance. Ecotoxicology 10:5–23

    Article  PubMed  CAS  Google Scholar 

  • Gerloff CU, Ottmer BK, Schmid-Hempel P (2003) Effects of inbreeding on immune response and body size in a social insect, Bombus terrestris. Funct Ecol 17:582–589

    Article  Google Scholar 

  • Gillespie JP, Kanost MR, Trenczek T (1997) Biological mediators of insect immunity. Ann Rev Entomol 42:611–643

    Article  CAS  Google Scholar 

  • Gorman MJ, Cornel AJ, Collins FH, Paskewitz SM (1996) A shared genetic mechanism for melanotic encapsulation of CM-Sephadex beads and a malaria parasite, Plasmodium cynomolgi B, in the mosquito, Anopheles gambiae. Exp Parasitol 84:380–386

    Article  PubMed  CAS  Google Scholar 

  • Götz P (1986) Encapsulation in arthropods. In: Brehélin M (ed) Immunity in invertebrates: cells, molecules, and defense reactions. Springer, Berlin, pp 153–170

    Google Scholar 

  • Greeff M, Schmid-Hempel P (2008) Sperm reduces female longevity and increases melanization of the spermatheca in the bumblebee Bombus terrestris L. Insect Soc 55:313–319

    Article  Google Scholar 

  • Haag-Liautard C, Vitikainen E, Keller L, Sundström L (2009) Fitness and the level of homozygosity in a social insect. J Evol Biol 22:134–142

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keller L, Liautard C, Reuter M, Brown WD, Sundström L, Chapuisat M (2001) Sex ratio and Wolbachia infection in the ant Formica exsecta. Heredity 87:227–233

    Article  PubMed  CAS  Google Scholar 

  • Ketola T, Kotiaho JS (2009) Inbreeding, energy use and condition. J Evol Biol 22:770–781

    Article  PubMed  CAS  Google Scholar 

  • Konig C, Schmid-Hempel P (1995) Foraging activity and immunocompetence in workers of the bumble bee, Bombus terrestris. L Proc R Soc B 260:225–227

    Article  Google Scholar 

  • Kristensen TN (2006) Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Kristensen TN, Sorensen P, Kruhoffer M, Pedersen KS, Loeschcke V (2005) Genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171:157–167

    Article  PubMed  CAS  Google Scholar 

  • Lawniczak MK, Barnes AI, Linklater JR, Boone JM, Wigby S, Chapman T (2007) Mating and immunity in invertebrates. Trends Ecol Evol 22:48–55

    Article  PubMed  Google Scholar 

  • Liersch S, Schmid-Hempel P (1998) Genetic variation within social insect colonies reduces parasite load. Proc R Soc B 265:221–225

    Article  Google Scholar 

  • Luong LT, Heath BD, Polak M (2007) Host inbreeding increases susceptibility to ectoparasitism. J Evol Biol 20:79–86

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Ma WH, Chen LZ, Wang M, Li XC (2008) Trade-offs between melanisation and life-history traits in Helicoverpa armigera. Ecol Entomol 33:37–44

    Google Scholar 

  • Medina LM, Hart AG, Ratnieks FLW (2009) Hygienic behavior in the stingless bees Melipona beecheii and Scaptotrigona pectoralis (Hymenoptera: Meliponini). Genet Mol Res 8:571–576

    Article  PubMed  CAS  Google Scholar 

  • Moret Y, Schmid-Hempel P (2009) Immune responses of bumblebee workers as a function of individual and colony age: senescence versus plastic adjustment of the immune function. Oikos 118:371–378

    Article  Google Scholar 

  • Muller C, Schmid-Hempel P (1992) Correlates of reproductive success among field colonies of Bombus lucorum—the importance of growth and parasites. Ecol Entomol 17:343–353

    Article  Google Scholar 

  • Nappi AJ, Vass E (1993) Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res 6:117–126

    Article  PubMed  CAS  Google Scholar 

  • O'Brien SJ, Evermann J (1988) Interactive influence of infectious disease and genetic diversity in natural populations. Trends Ecol Evol 3:254–259

    Article  PubMed  Google Scholar 

  • Ortius-Lechner D, Maile R, Morgan ED, Boomsma JJ (2000) Metaplural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. J Chem Ecol 26:1667–1683

    Article  CAS  Google Scholar 

  • Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, New Jersey

    Google Scholar 

  • Paskewitz SM, Riehle M (1994) Response of Plasmodium refractory and susceptible strains of Anopheles gambiae to inoculated Sephadex beads. Dev Comp Immunol 18:369–375

    Article  PubMed  CAS  Google Scholar 

  • Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164

    Article  Google Scholar 

  • Potts WK, Manning CJ, Wakeland EK, Hughes AL (1994) The role of infectious disease, inbreeding and mating preferences in maintaining MHC genetic diversity: an experimental test [and discussion]. Phil Trans R Soc B 346:369–378

    Article  PubMed  CAS  Google Scholar 

  • Poulsen M, Bot ANM, Nielsen MG, Boomsma JJ (2002) Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants. Behav Ecol Sociobiol 52:151–157

    Article  Google Scholar 

  • Rantala MJ, Kortet R (2003) Courtship song and immune function in the field cricket Gryllus bimaculatus. Biol J Linn Soc 79:503–510

    Article  Google Scholar 

  • Rantala MJ, Roff DA (2005) An analysis of trade-offs in immune function, body size and development time in the Mediterranean field cricket, Gryllus bimaculatus. Funct Ecol 19:323–330

    Article  Google Scholar 

  • Rantala MJ, Roff DA (2006) Analysis of the importance of genotypic variation, metabolic rate, morphology, sex and development time on immune function in the cricket, Gryllus firmus. J Evol Biol 19:834–843

    Article  PubMed  CAS  Google Scholar 

  • Rantala MJ, Roff DA (2007) Inbreeding and extreme outbreeding cause sex differences in immune defence and life history traits in Epirrita autumnata. Heredity 98:329–336

    Article  PubMed  CAS  Google Scholar 

  • Rantala MJ, Koskimäki J, Suhonen J, Taskinen J, Tynkkynen K (2000) Immunocompetence, developmental stability and wing spot size in Calopteryx splendens. Proc Royal Soc B 267:2453–2457

    Article  CAS  Google Scholar 

  • Rantala MJ, Jokinen I, Kortet R, Vainikka A, Suhonen J (2002) Do pheromones reveal immunocompetence? Proc Royal Soc B 269:1681–1685

    Article  Google Scholar 

  • Ratcliffe N, Rowley A, Fitzgerald S, Rhodes C (1985) Invertebrate immunity: basic concepts and recent advances. Int Rev Cytol 97:183–350

    Article  CAS  Google Scholar 

  • Reed DH, Nicholas AC, Stratton GE (2007) Genetic quality of individuals impacts population dynamics. Anim Conserv 10:275–283

    Article  Google Scholar 

  • Rosengaus RB, Traniello JFA (1993) Disease risk as a cost of outbreeding in the termite Zootermopsis angusticollis. Proc Natl Acad Sci 90:6641–6645

    Article  PubMed  CAS  Google Scholar 

  • Rosengren R, Pamilo P (1983) The evolution of polygyny and polydomy in mound-building Formica ants. Acta entomol Fenn 42:65–77

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Phil Trans R Soc B 354:507–515

    Article  Google Scholar 

  • Schwarzenbach GA, Ward PI (2006) Responses to selection on phenoloxidase activity in yellow dung flies. Evolution 60:1612–1621

    PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  PubMed  CAS  Google Scholar 

  • Sherman PW, Seeley TD, Reeve HK (1988) Parasites, pathogens, and polyandry in social Hymenoptera. Am Nat 131:602–610

    Article  Google Scholar 

  • Siva-Jothy MT, Tsubaki Y, Hooper RE (1998) Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiol Entomol 23:274–277

    Article  Google Scholar 

  • Sorvari J, Rantala LM, Rantala MJ, Hakkarainen H, Eeva T (2007) Heavy metal pollution disturbs immune response in wild ant populations. Environ Pollut 145:324–328

    Article  PubMed  CAS  Google Scholar 

  • Sorvari J, Hakkarainen H, Rantala MJ (2008) Immune defense of ants is associated with changes in habitat characteristics. Environ Entomol 37:51–56

    Article  PubMed  Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448

    Article  Google Scholar 

  • Stevens L, Yan G, Pray LA (1997) Consequences of inbreeding on invertebrate host susceptibility to parasitic infection. Evolution 51:2032–2039

    Article  Google Scholar 

  • Sundström L, Chapuisat M, Keller L (1996) Conditional manipulation of sex ratios by ant workers: a test of kin selection theory. Science 274:993–995

    Article  PubMed  Google Scholar 

  • Sundström L, Keller L, Chapuisat M (2003) Inbreeding and sex-biased gene flow in the ant Formica exsecta. Evolution 57:1552–1561

    PubMed  Google Scholar 

  • Tarlow E, Blumstein DT (2007) Evaluating methods to quantify anthropogenic stressors on animals. Appl Anim Behav Sci 102:429–451

    Article  Google Scholar 

  • Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc B 270:99–103

    Article  PubMed  Google Scholar 

  • Tian H, Vinson SB, Coates CJ (2004) Differential gene expression between alate and dealate queens in the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). Insect Biochem Mol Biol 34:937–949

    Article  CAS  Google Scholar 

  • Ugelvig LV, Cremer S (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Curr Biol 17:1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Uvell H, Engström Y (2007) A multilayered defense against infection: combinatorial control of insect immune genes. Trends Genet 23:342–349

    Google Scholar 

  • Vainio L, Hakkarainen H, Rantala MJ, Sorvari J (2004) Individual variation in immune function in the ant Formica exsecta; effects of the nest, body size and sex. Evol Ecol 18:75–84

    Article  Google Scholar 

  • Wright S (1977) Evolution and the genetics of populations. Vol. 3. Experimental results and evolutionary deductions, vol 3. University of Chicago Press, Chicago

    Google Scholar 

  • Zar JH (1999) Biostatistical Analysis. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

We thank Ulla Vattulainen and Hannele Luhtasela-El-Showk for help in the field, and Michel Chapuisat, Heikki Helanterä, Hannele Luhtasela-El Showk, Markus J. Rantala, James Traniello and an anonymous reviewer for helpful comments that greatly improved this manuscript. This study was funded by the Academy of Finland, grant numbers 54952, 206505 and 121216 and the Finnish Society for Sciences and Letters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Vitikainen.

Additional information

Communicated by J. Traniello

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitikainen, E., Sundström, L. Inbreeding and caste-specific variation in immune defence in the ant Formica exsecta . Behav Ecol Sociobiol 65, 899–907 (2011). https://doi.org/10.1007/s00265-010-1090-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-010-1090-1

Keywords

Navigation