Skip to main content

Advertisement

Log in

Genetic diversity, paternal origin and pathogen resistance in Cataglyphis desert ants

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Group genetic diversity is usually associated with a reduced risk of disease outbreak and a slower rate of pathogen transmission. In social insects, multiple mating by queens (polyandry) evolved several times albeit reducing worker’s inclusive fitness. One major hypothesis suggests that polyandry has been selected for to mitigate the risk of outbreak thanks to increased genetic diversity within colonies. We investigated this hypothesis in the ant Cataglyphis mauritanica, in which nestmate workers are produced by several clonal, single-mated queens. Using natural colonies, we correlated genetic diversity with worker survival to a fungal entomopathogen. We further tested whether workers from different paternal lineages (but a common maternal genome) show differential resistance in experimentally single- or multiple-patriline groups, and whether an increased number of patrilines in a group improved disease resistance. We show that workers from distinct patrilines vary in their resistance to a pathogen in single-patriline colonies, but the difference among patrilines disappears when they are mixed in multiple-patriline colonies. Furthermore, pathogen resistance was affected by the number of patrilines in a group, with two- and three-patriline groups being more resistant than single-patriline groups. However, resistance did not differ between groups made of two and three patrilines; similarly, it was not associated with genetic diversity in natural colonies. Overall, our results suggest that collective disease defenses might homogenize workers’ resistance from different patrilines and, thereby, stabilize colony resistance.

Significance Statement

The occurrence of multiple breeders in insect societies has been hypothesized to be selected for because increased within-colony genetic diversity reduces the risk of severe outbreaks. We show that nestmate workers from distinct paternal lineages vary in their resistance to pathogens when reared in single-patriline groups. However, this difference disappears when workers are mixed in multiple-patriline groups. These results suggest that multiple mating by queens dilutes the deleterious consequences of a single patriline producing only susceptible offspring, rather than directly enhancing pathogen resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data generated in this study have been made publicly available on the Open Science Framework depository(https://osf.io/4tu5r/). https://doi.org/10.17605/OSF.IO/4TU5R

References

  • Aguero CM, Eyer PA, Vargo EL (2020) Increased genetic diversity from colony merging in termites does not improve survival against a fungal pathogen. Sci Rep 10:4212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguero CM, Eyer PA, Crippen TL, Vargo EL (2021a) Reduced environmental microbial diversity on the cuticle and in the galleries of a subterranean termite compared to surrounding soil. Microb Ecol 81:1054–1063

    CAS  PubMed  Google Scholar 

  • Aguero CM, Eyer PA, Martin JS, Bulmer MS, Vargo EL (2021b) Natural variation in colony inbreeding does not influence susceptibility to a fungal pathogen in a termite. Ecol Evol 11:3072–3083

    PubMed  PubMed Central  Google Scholar 

  • Altizer S, Harvell D, Friedle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evol 18:589–596

    Google Scholar 

  • Anderson RM, May RM (1981) The population dynamics of microparasites and their invertebrate hosts. Philos Trans R Soc Lond B 291:451–524

    Google Scholar 

  • Anderson RM, May RM (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos Trans R Soc Lond B 314:533–570

    CAS  Google Scholar 

  • Armitage SAO, Boomsma JJ (2010) The effects of age and social interactions on innate immunity in a leaf-cutting ant. J Insect Physiol 56:780–787

    CAS  PubMed  Google Scholar 

  • Armitage SAO, Broch JF, Marín HF, Nash DR, Boomsma JJ (2011) Immune defense in leaf-cutting ants: a cross-fostering approach. Evolution 65:1791–1799

    PubMed  Google Scholar 

  • Arnqvist G, Nilsson T (2000) The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60:145–164

    CAS  PubMed  Google Scholar 

  • Aron S, Darras H, Eyer PA, Leniaud L, Pearcy M (2013) Structure génétique des sociétés et systèmes d’accouplement chez la fourmi Cataglyphis viatica (Fabricius 1787). Bull Inst Sci Rabat 35:103–109

    Google Scholar 

  • Aron S, Mardulyn P, Leniaud L (2016) Evolution of reproductive traits in Cataglyphis desert ants: mating frequency, queen number, and thelytoky. Behav Ecol Sociobiol 70:1367–1379

    Google Scholar 

  • Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154

    CAS  Google Scholar 

  • Baer B, Schmid-Hempel P (2001) Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 55:1639–1643

    CAS  PubMed  Google Scholar 

  • Baer B, Schmid-Hempel P (2003) Bumblebee workers from different sire groups vary in susceptibility to parasite infection. Ecol Let 6:106–110

    Google Scholar 

  • Bocher A, Tirard C, Doums C (2007) Phenotypic plasticity of immune defence linked with foraging activity in the ant Cataglyphis velox. J Evol Biol 20:2228–2234

    CAS  PubMed  Google Scholar 

  • Boomsma JJ, Ratnieks FLW (1996) Paternity in eusocial Hymenoptera. Philos Trans R Soc B Biol Sci 351:947–975

    Google Scholar 

  • Boomsma JJ, Schmid-Hempel P, Hughes WOH (2005) Life histories and parasite pressure across the major groups of social insects. In: Fellowes M, Holloway G, Rolff G (eds) Insect Evolutionary Ecology. CABI, Wallingford, pp 139–175

    Google Scholar 

  • Boomsma JJ, Kronauer DJC, Pedersen JS (2009) The evolution of social insect mating system. Harvard University Press, Cambridge, p 611

    Google Scholar 

  • Boomsma JJ, Huszár DB, Pedersen JS (2014) The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim Behav 92:241–252

    Google Scholar 

  • Boulay R, Arnan X, Cerdá X, Retana J (2014) The ecological benefits of larger colony size may promote polygyny in ants. J Evol Biol 27:2856–2863

    CAS  PubMed  Google Scholar 

  • Bourgeois AL, Rinderer T, Sylvester HA, Holloway B, Oldroyd B (2012) Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie 43:539–548

    Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, p 550

    Google Scholar 

  • Brahma A, Leon RG, Hernandez GL, Wurm Y (2022) Larger, more connected societies of ants have a higher prevalence of viruses. Mol Ecol 31:859–865

    PubMed  Google Scholar 

  • Briano JA, Patterson RS, Cordo HA (1995) Relationship between colony size of Solenopsis richteri (Hymenoptera: Formicidae) and infection with Thelohania solenopsae (Microsporida : Thelohaniidae) in Argentina. J Eco Entomol 88:1233–1237

    Google Scholar 

  • Bull JC, Ryabov EV, Prince G, Mead A, Zhang C et al (2012) A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS Pathogen 8:e1003083

    CAS  Google Scholar 

  • Calleri DV, McGrail RE, Rosengaus RB, Vargo EL, Traniello JF (2006) Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc R Soc b: Biol Sci 273:2633–2640

    Google Scholar 

  • Castella G, Christe P, Chapuisat M (2010) Covariation between colony social structure and immune defences of workers in the ant Formica selysi. Insect Soc 57:233–238

    Google Scholar 

  • Chouvenc T, Su NY, Robert A (2009) Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus Metarhizium anisopliae. J Invert Pathol 101:234–241

    Google Scholar 

  • Chouvenc T, Bardunias P, Efstathion CA, Chakrabarti S, Elliott ML, Giblin-Davis R, Su NY (2013) Resource opportunities from the nest of dying subterranean termite (Isoptera: Rhinotermitidae) colonies: a laboratory case of ecological succession. Ann Entomol Soc Am 106:771–777

    Google Scholar 

  • Crawford KM, Crutsinger GM, Sanders NJ (2007) Genotypic diversity mediates the distribution of an ecosystem engineer. Ecology 88:2114–2120

    PubMed  Google Scholar 

  • Cremer S, Sixt M (2009) Analogies in the evolution of individual and social immunity. Proc R Soc b: Biol Sci 364:129–142

    Google Scholar 

  • Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:693–702

    Google Scholar 

  • Cremer S, Pull CD, Fuerst MA (2018) Social immunity: Emergence and evolution of colony-level disease protection. Ann Rev Entomol 63:105–123

    CAS  Google Scholar 

  • Crozier RH, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera - disunity in diversity? Ann Zool Fenn 38:267–285

    Google Scholar 

  • de Souza DJ, Van Vlaenderen J, Moret Y, Lenoir A (2008) Immune response affects ant trophallactic behaviour. J Insect Physiol 54:828–832

    PubMed  Google Scholar 

  • Desai SD, Currie RW (2015) Genetic diversity within honey bee colonies affects pathogen load and relative virus levels in honey bees, Apis mellifera L. Behav Ecol Sociobiol 69:1527–1541

    Google Scholar 

  • Dwyer G, Elkington JS (1993) Using simple models to predict virus epizootics in gypsy moth populations. J Anim Ecol 62:1–11

    Google Scholar 

  • Evison SEF, Fazio G, Chappell P, Foley K, Jensen AB, Hughes WOH (2013) Host-parasite genotypic interactions in the honey bee: the dynamics of diversity. Ecol Evol 3:2214–2222

    PubMed  PubMed Central  Google Scholar 

  • Eyer PA, Hefetz A (2018) Cytonuclear incongruences hamper species delimitation in the socially polymorphic desert ants of the Cataglyphis albicans group in Israel. J Evol Biol 31:1828–1842

    CAS  PubMed  Google Scholar 

  • Eyer PA, Freyer J, Aron S (2013a) Genetic polyethism in the polyandrous desert ant Cataglyphis cursor. Behav Ecol 24:144–151

    Google Scholar 

  • Eyer PA, Leniaud D, Darras H, Aron S (2013b) Hybridogenesis through thelytokous parthenogenesis in two Cataglyphis desert ants. Mol Ecol 22:947–955

    CAS  PubMed  Google Scholar 

  • Farji-Brener AG, Elizalde L, Fernández-Marín H, Amador-Vargas S (2016) Social life and sanitary risks: evolutionary and current ecological conditions determine waste management in leaf-cutting ants. Proc R Soc B 283:20160625

    PubMed  PubMed Central  Google Scholar 

  • Frumhoff PC, Schneider S (1987) The social consequences of honey bee polyandry: the effects of kinship on worker interactions within colonies. Anim Behav 35:255–262

    Google Scholar 

  • Gálvez D, Chapuisat M (2014) Immune priming and pathogen resistance in ant queens. Ecol Evol 4:1761–1767

    PubMed  PubMed Central  Google Scholar 

  • Ganz HH, Ebert D (2010) Benefits of host genetic diversity for resistance to infection depend on parasite diversity. Ecology 91:1263–1268

    PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour I and II. J Theor Biol 7:1–52

    CAS  PubMed  Google Scholar 

  • Hamilton WD (1982) Pathogens as causes of genetic diversity in their host populations. In: Anderson RM, May RM (eds) Population biology of infectious diseases. Springer-Verlag, New York, pp 269–296

    Google Scholar 

  • Hamilton WD (1987) Kinship, recognition, disease and intelligence. In Animal societies: theories and facts (eds Ito Y., Brown J.L., et Kikkawa J.). Japan Scientific Societies Press, Tokyo, 291 pp

  • Hamilton C, Lejeune BT, Rosengaus RB (2011) Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biol Lett 23:89–92

    Google Scholar 

  • Hart AG, Ratnieks FLW (2002) Waste management in the leaf-cutting ant Atta colombica. Behav Ecol 13:224–231

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometric J 50:346–363

    Google Scholar 

  • Hughes WOH, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf cutting ant societies. Evolution 58:1251–1260

    PubMed  Google Scholar 

  • Hughes WO, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc B 269:1811–1819

    PubMed  PubMed Central  Google Scholar 

  • Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FL (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 30:1213–1216

    Google Scholar 

  • Invernizzi C, Peñagaricano F, Tomasco IH (2009) Intracolonial genetic variability in honeybee larval resistance to the chalkbrood and American foulbrood parasites. Insect Soc 56:233–240

    Google Scholar 

  • Jennions MD, Petrie M (2000) Why do females mate multiply? A review of the genetic benefits. Biol Rev 75:21–64

    CAS  PubMed  Google Scholar 

  • Johansson H, Dhaygude K, Lindström S, Helanterä H, Sundström L, Trontti K (2013) A metatranscriptomic approach to the identification of microbiota associated with the ant Formica exsecta. PLoS ONE 8:e79777

    PubMed  PubMed Central  Google Scholar 

  • Keller L (1993) Queen number and sociality in insects. Oxford Science Press, Oxford, p 456

    Google Scholar 

  • Keller L (1995) Social life: the paradox of multiple-queen colonies. Trends Ecol Evol 10:355–360

    CAS  PubMed  Google Scholar 

  • Konrad M, Vyleta ML, Theis FJ et al (2012) Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLOS Biol 10:e1001300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus B, Page RE Jr (1998) Parasites, pathogens, and polyandry in social insects. Am Nat 151:383–391

    CAS  PubMed  Google Scholar 

  • Kuhn A, Bauman D, Darras H et al (2017) Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system. Heredity 119:207–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn A, Darras H, Paknia O, Aron S (2020) Repeated evolution of queen parthenogenesis and social hybridogenesis in Cataglyphis desert ants. Mol Ecol 29:549–564

    PubMed  Google Scholar 

  • Lee GM, McGee PA, Oldroyd BP (2013a) Variable virulence among isolates of Ascosphaera apis: testing the parasite-pathogen hypothesis for the evolution of polyandry in social insects. Naturwissenschaften 100:229–234

    PubMed  Google Scholar 

  • Lee GM, Brown MJF, Oldroyd BP (2013b) Inbred and outbred honey bees (Apis mellifera) have similar innate immune responses. Insect Soc 60:97–102

    Google Scholar 

  • Leniaud L, Heftez A, Grumiau L, Aron L (2011) Multiple mating and supercoloniality in Cataglyphis desert ants. Biol J Linn Soc 104:866–876

    Google Scholar 

  • Liersch S, Schmid-Hempel P (1998) Genetic variation within social insect colonies reduces parasite load. Proc R Soc B 265:221–225

    PubMed Central  Google Scholar 

  • Lindström S, Timonen S, Sundström L (2021) The bacterial and fungal community composition in time and space in the nest mounds of the ant Formica exsecta (Hymenoptera: Formicidae). MicrobiologyOpen 10:e1201

    PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhao XY, Tang QB, Lei CL, Huang QY (2019) The mechanisms of social immunity against fungal infections in eusocial insects. Toxins 11:244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe EC, Simmons LW, Baer B (2011) Worker heterozygosity and immune response in feral and managed honeybees (Apis mellifera). Austral J Zool 59:73–78

    Google Scholar 

  • Lucas J, Bill B, Stevenson B, Kaspari M (2017) The microbiome of the ant-built home: the microbial communities of a tropical arboreal ant and its nest. Ecosphere 8:e01639

    Google Scholar 

  • Malagocka J, Eilenberg J, Jensen AB (2019) Social immunity behaviour among ants infected by specialist and generalist fungi. Curr Opin Insect Sci 33:99–104

    PubMed  Google Scholar 

  • Masri L, Cremer S (2014) Individual and social immunisation in insects. Trends Immun 35:471–482

    CAS  Google Scholar 

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:632–364

    Google Scholar 

  • Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG (2012) Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE 7:e32962

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Evol Ecol 16:295–300

    CAS  Google Scholar 

  • Meurville MP, LeBoeuf A (2021) Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol News 31:1–30

    Google Scholar 

  • Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol Cont 43:145–155

    Google Scholar 

  • Oldroyd BP, Clifton MJ, Parker K, Wongsiri S, Rinderer TE, Crozier RH (1998) Evolution of mating behavior in the genus Apis and an estimate of mating frequency in A. cerana (Hymenoptera: Apidae). Ann Entomol Soc Am 91:700–709

    CAS  Google Scholar 

  • Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie 31:235–248

    Google Scholar 

  • Palmer KA, Oldroyd BP (2003) Evidence for intra-colonial genetic variance in resistance to American foulbrood of honey bees (Apis mellifera): further support for the parasite ⁄ pathogen hypothesis for the evolution of polyandry. Naturwissenschaften 90:265–268

    CAS  PubMed  Google Scholar 

  • Pereira H, Jossart M, Detrain C (2020) Waste management by ants: the enhancing role of larvae. Anim Behav 168:187–198

    Google Scholar 

  • Pérez-Lachaud G, Valenzuela JE, Lachaud JP (2011) Is increased resistance to parasitism at the origin of polygyny in a Mexican population of the ant Ectatomma tuberculatum (Hymenoptera: Formicidae)? Florida Entomol 94:677–684

    Google Scholar 

  • Qiu H, Lu L, Shi Q et al (2014) Fungus exposed Solenopsis invicta ants benefit from grooming. J Insect Behav 27:678–691

    Google Scholar 

  • R Core Team (2014) R version 3.1.1: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rauch G, Kalbe M, Reusch TBH (2007) Partitioning average competition and extreme genotype effects in genetically diverse infections. Oikos 117:399–405

    Google Scholar 

  • Reber A, Castella G, Christe P, Chapuisat M (2008) Experimentally increased group diversity improves disease resistance in an ant species. Ecol Lett 11:682–689

    PubMed  Google Scholar 

  • Rheindt FE, Strehl CP, Gadau JA (2005) Genetic component in the determination of worker polymorphism in the Florida harvester ant Pogonomyrmex badius. Insect Soc 52:163–168

    Google Scholar 

  • Rosengaus RB, Traniello JFA, Chen T, Brown JJ, Karp RD (1999) Immunity in a social insect. Naturwissenschaften 86:588–591

    CAS  Google Scholar 

  • Rosengaus RB, Malak T, MacKintosh C (2013) Immune-priming in ant larvae: social immunity does not undermine individual immunity. Biol Lett 9:20130563

    PubMed  PubMed Central  Google Scholar 

  • Rueppell O, Johnson N, Rychtar J (2008) Variance-based selection may explain general mating patterns in social insects. Biol Lett 4:270–273

    PubMed  PubMed Central  Google Scholar 

  • Sadd BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16:1206–1210

    CAS  PubMed  Google Scholar 

  • Saga T, Okuno M, Loope KJ, Tsuchida K et al (2020) Polyandry and paternity affect disease resistance in eusocial wasps. Behav Ecol 31:1172–1179

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Monographs in Behavior and Ecology. Princeton University Press, Princeton, 392 pp

  • Schmid-Hempel P, Crozier RH (1999) Polyandry versus polygyny versus parasites. Philos Trans R Soc b: Biol Sci 354:507–515

    Google Scholar 

  • Schmidt AM, Linksvayer TA, Boomsma JJ, Pedersen JS (2011) No benefit in diversity? The effect of genetic variation on survival and disease resistance in a polygynous social insect. Ecol Entomol 36:751–759

    Google Scholar 

  • Seeley TD, Tarpy DR (2007) Queen promiscuity lowers disease within honeybee colonies. Proc R Soc b: Biol Sci 274:67–72

    Google Scholar 

  • Sherman PW, Seeley TD, Reeve HK (1988) Parasites, pathogens, and polyandry in social Hymenoptera. Am Nat 131:602–610

    Google Scholar 

  • Simone-Finstrom M, Walz M, Tarpy DR (2016) Genetic diversity confers colony-level benefits due to individual immunity. Biol Lett 12:20151007

    PubMed  PubMed Central  Google Scholar 

  • Slayter RA, Mautz BS, Backwell PRY, Jennions MD (2012) Estimating genetic benefits of polyandry from experimental studies: a meta-analysis. Biol Rev 87:1–33

    Google Scholar 

  • Strassmann J (2001) The rarity of multiple mating by females in the social Hymenoptera. Insect Soc 48:1–13

    Google Scholar 

  • Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc b: Biol Sci 270:99–103

    Google Scholar 

  • Tarpy DR, Seeley TD (2006) Lower disease infections in honeybee (Apis mellifera) colonies headed by polyandrous vs monandrous queens. Naturwissenschaften 93:195–199

    CAS  PubMed  Google Scholar 

  • Therneau T (2011) Survival: survival analysis, including penalised likelihood. http://cran.r-project.org/web/packages/survival

  • Tranter C, Graystock P, Shaw C et al (2014) Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics. Behav Ecol Sociobiol 68:499–507

    Google Scholar 

  • Ulgevig LV, Cremer S (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Curr Biol 17:1967–1971

    Google Scholar 

  • Ulgevig LV, Kronauer DJC, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc b: Biol Sci 277:2821–2828

    Google Scholar 

  • van Baalen M, Beekman M (2006) The costs and benefits of genetic heterogeneity in resistance against parasites in social insects. Am Nat 167:568–577

    PubMed  Google Scholar 

  • Van Valen L (1973) A New Evolutionary Law. Evol Theor 1:1–30

    Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Wang JL (2002) An estimator for pairwise relatedness using molecular markers. Genetics 160:1203–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JL (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979

    PubMed  PubMed Central  Google Scholar 

  • Westhus C, Ugelvig LV, Tourdot E et al (2014) Increased grooming after repeated brood care provides sanitary benefits in a clonal ant. Behav Ecol Sociobiol 68:1701–1710

    Google Scholar 

  • Wiernasz DC, Perroni CL, Cole BJ (2004) Polyandry and fitness in the western harvester ant, Pogonomyrmex occidentalis. Mol Ecol 131:1601–1606

    Google Scholar 

  • Wiernasz DC, Hines J, Parker DG, Cole BJ (2008) Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Mol Ecol 17:1137–1144

    PubMed  Google Scholar 

  • Wilson EO (1992) The effects of complex social life on evolution and biodiversity. Oikos 63:13–18

    CAS  Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Ann Rev Entomol 54:405–423

    CAS  Google Scholar 

  • Wilson-Rich N, Tarpy DR, Starks PT (2012) Within- and across-colony effects of hyperpolyandry on immune function and body condition in honey bees (Apis mellifera). J Insect Physiol 58:402–407

    CAS  PubMed  Google Scholar 

  • Yasui Y (1998) The ‘genetic benefits’ of female multiple mating reconsidered. Trends Ecol Evol 13:246–250

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to M. Avet for her help with experiments. Thanks to D. Gàlvez and M. Chapuisat for providing fungus samples, their helpful experimental expertise, and their comments on previous versions of the manuscript. We are grateful to B. Gassner for English improvement of the manuscript, as well as to the Morocco’s High Commission for Water, Forests and Combating Desertification (HCEFLCD—Decision 277/2012) for granting us collection permits. This work was supported by a PhD fellowship from the FRIA (Fonds pour l’Encouragement de la Recherche Scientifique dans l’Industrie et l’Agriculture) (PAE), as well as grants from the Belgian FRS-FNRS (Fonds National pour la Recherche Scientifique; grants # T.0140.18 and J.0063.14) and the Université Libre de Bruxelles (Actions Blanches) (SA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Eyer.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by B. Baer

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyer, P.A., Guery, P.A. & Aron, S. Genetic diversity, paternal origin and pathogen resistance in Cataglyphis desert ants. Behav Ecol Sociobiol 77, 81 (2023). https://doi.org/10.1007/s00265-023-03358-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-023-03358-y

Keywords

Navigation