Skip to main content
Log in

Seminal fluid protein depletion and replenishment in the fruit fly, Drosophila melanogaster: an ELISA-based method for tracking individual ejaculates

  • Original Paper
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

In many species, seminal fluid proteins (SFPs) affect female post-mating behavioral patterns, including sperm storage, egg laying, feeding, and remating. Yet, few studies have investigated the patterns of allocation, depletion, and replenishment of SFPs in male animals, despite the importance of these proteins to male and female reproductive success. To investigate such SFP dynamics, it is necessary to have a sensitive method for quantifying SFP levels in males and mated females. We developed such a method by adapting the enzyme-linked immunosorbent assay (ELISA) using anti-SFP antibodies. Here, we first use two Drosophila melanogaster SFPs (ovulin and sex peptide) to demonstrate that ELISAs provide accurate measures of SFP levels. We find that, consistent with previous data from Western blotting or immunofluorescence studies, levels of both ovulin and sex peptide decline in the mated female with time since mating, but they do so at different rates. We then use ELISAs to show that males become depleted of SFPs with repeated matings, but that previously mated males are able to transfer “virgin” levels of SFPs after 3 days of sexual inactivity. Finally, we demonstrate that ELISAs can detect SFPs from wild-caught D. melanogaster males and, thus, potentially can be used to track mating patterns in the wild. This method of measuring SFP dynamics can be used in a wide range of species to address questions related to male reproductive investment, female mating history, and variation in female post-mating behavioral changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson J, Borg-Karlson AK, Wiklund C (2004) Sexual conflict and anti-aphrodisiac titre in a polyandrous butterfly: male ejaculate tailoring and absence of female control. Proc Roy Soc Lond B 271:1765–1770

    Article  Google Scholar 

  • Bertram MJ, Akerkar GA, Ard GA, Gonzalez C, Wolfner MF (1992) Cell type-specific gene expression in the Drosophila melanogaster accessory gland. Mech Devel 38:33–40

    Article  CAS  Google Scholar 

  • Bertram MJ, Neubaum DM, Wolfner MF (1996) Localization of the Drosophila male accessory gland proteins Acp36DE in the mated female suggests a role for sperm storage. Insect Biochem Mol Biol 26:971–980

    Article  PubMed  CAS  Google Scholar 

  • Bissoondath CJ, Wiklund C (1996) Effect of male mating history and body size on ejaculate size and quality in two polyandrous butterflies, Pieris napi and Pieris rapae (Lepidoptera: Pieridae). Func Ecol 10:457–464

    Article  Google Scholar 

  • Bloch Qazi MC, Wolfner MF (2003) An early role for Drosophila melanogaster male seminal protein Acp36DE in female sperm storage. J Exp Biol 206:3521–3528

    Article  PubMed  CAS  Google Scholar 

  • Braswell WE, Andrés JA, Maroja LS, Harrison RG, Howard DJ, Swanson WJ (2006) Identification and comparative analysis of accessory gland proteins in Orthoptera. Genome 49:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Bretman AJ, Fricke C, Chapman T (2009) Plastic responses of male Drosophila melanogaster to the level of sperm competition increase male reproductive fitness. Proc Roy Soc Lond B 276:1705–1711

    Article  Google Scholar 

  • Carter DB, Timmins JG, Adams LD, Lewis RW, Karr JP, Resnick MI, Buhl AE (1985) The antigenic relatedness of proteins from human and simian prostate fluid. Prostate 6:395–402

    Article  PubMed  CAS  Google Scholar 

  • Carvalho GB, Kapahi P, Anderson DJ, Benzer S (2006) Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr Biol 16:692–696

    Article  PubMed  CAS  Google Scholar 

  • Cattini R, Robinson D, Gill O, Jolley N, Bacaresehamilton T (1994) Measurement of prostate specific antigen in serum using 4 different immunoassays. Eur J Clin Chem Clin Biochem 32:181–185

    PubMed  CAS  Google Scholar 

  • Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, Smith HK, Partridge L (2003) The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci USA 100:9923–9928

    Article  PubMed  CAS  Google Scholar 

  • Clark NL, Swanson WJ (2005) Pervasive adaptive evolution in primate seminal proteins. Plos Genet 1:335–342

    Article  CAS  Google Scholar 

  • Coleman S, Drahn B, Petersen G, Stolorov J, Kraus K (1995) A Drosophila male accessory-gland protein that is a member of the serpin superfamily of proteinase-inhibitors is transferred to females during mating. Insect Biochem Mol Biol 25:203–207

    Article  PubMed  CAS  Google Scholar 

  • Collins AM, Caperna TJ, Williams V, Garrett WM, Evans JD (2006) Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Mol Biol 15:541–549

    Article  PubMed  CAS  Google Scholar 

  • Davies SJ, Chapman T (2006) Identification of genes expressed in the accessory glands of male Mediterranean Fruit Flies (Ceratitis capitata). Insect Biochem Mol Biol 36:846–856

    Article  PubMed  CAS  Google Scholar 

  • DiBenedetto AJ, Harada HA, Wolfner MF (1990) Structure, cell-specific expression and mating-induced regulation of a Drosophila melanogaster male accessory-gland gene. Devel Biol 139:134–148

    Article  CAS  Google Scholar 

  • Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F (2007) A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci USA 104:16215–16220

    Article  PubMed  CAS  Google Scholar 

  • Friberg U (2006) Male perception of female mating status: its effect on copulation duration, sperm defence and female fitness. Anim Behav 72:1259–1268

    Article  Google Scholar 

  • Gillott C (2003) Male accessory gland secretions: Modulators of female reproductive physiology and behavior. Annu Rev Entomol 48:163–184

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Rossini C, Eisner M, Eisner T (1999) Sexually transmitted chemical defense in a moth (Utetheisa ornatrix). Proc Natl Acad Sci USA 96:5570–5574

    Article  PubMed  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteom 1:323–333

    Article  CAS  Google Scholar 

  • Harshman LG, Clark AG (1998) Inference of sperm competition from broods of field-caught Drosophila. Evol 52:1334–1341

    Article  Google Scholar 

  • Heifetz Y, Lung O, Frongillo EA, Wolfner MF (2000) The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Curr Biol 10:99–102

    Article  PubMed  CAS  Google Scholar 

  • Herndon LA, Wolfner MF (1995) A Drosophila seminal fluid protein, Acp26Aa, stimulates egg-laying in females for 1 day after mating. Proc Natl Acad Sci USA 92:10114–10118

    Article  PubMed  CAS  Google Scholar 

  • Herndon LA, Chapman T, Kalb JM, Lewin S, Partridge L, Wolfner MF (1997) Mating and hormonal triggers regulate accessory gland gene expression in male Drosophila. J Insect Physiol 43:1117–1123

    Article  PubMed  CAS  Google Scholar 

  • Hihara F (1981) Effects of the male accessory gland secretion on oviposition and re-mating in females of Drosophila melanogaster. Zool Mag (Tokyo) 90:307–316

    Google Scholar 

  • Ignotz GG, Cho MY, Suarez SS (2007) Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol Reprod 77:906–913

    Article  PubMed  CAS  Google Scholar 

  • Linklater JR, Wertheim B, Wigby S, Chapman T (2007) Ejaculate depletion patterns evolve in response to experimental manipulation of sex ratio in Drosophila melanogaster. Evol 61:2027–2034

    Article  Google Scholar 

  • Liu HF, Kubli E (2003) Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc Natl Acad Sci USA 100:9929–9933

    Article  PubMed  CAS  Google Scholar 

  • Lung O, Wolfner MF (1999) Drosophila seminal fluid proteins enter the circulatory system of the mated female fly by crossing the posterior vaginal wall. Insect Biochem Mol Biol 29:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Lung O, Wolfner MF (2001) Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem Mol Biol 31:543–551

    Article  PubMed  CAS  Google Scholar 

  • McGraw LA, Fiumera AC, Ramakrishnan M, Madhavarapu S, Clark AG, Wolfner MF (2007) Larval rearing environment affects several post-copulatory traits in Drosophila melanogaster. Biol Lett 3:607–610

    Article  PubMed  CAS  Google Scholar 

  • Monsma SA, Harada HA, Wolfner MF (1990) Synthesis of 2 Drosophila male accessory gland proteins and their fate after transfer to the female during mating. Devel Biol 142:465–475

    Article  CAS  Google Scholar 

  • Moura AA, Chapman DA, Koc H, Killian GJ (2007) A comprehensive proteomic analysis of the accessory sex gland fluid from mature Holstein bulls. Anim Reprod Sci 98:169–188

    Article  PubMed  CAS  Google Scholar 

  • Neubaum DM, Wolfner MF (1999) Mated Drosophila melanogaster females require a seminal fluid protein, Acp36DE, to store sperm efficiently. Genetics 153:845–857

    PubMed  CAS  Google Scholar 

  • Peng J, Chen S, Busser S, Liu HF, Honegger T, Kubli E (2005) Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Curr Biol 15:207–213

    Article  PubMed  CAS  Google Scholar 

  • Perez-Staples D, Aluja M, Macias-Ordonez R, Sivinski J (2008) Reproductive trade-offs from mating with a successful male: the case of the tephritid fly Anastrepha obliqua. Behav Ecol Sociobiol 62:1333–1340

    Article  Google Scholar 

  • Pilch B, Mann M (2006) Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol 7:R40

    Article  PubMed  Google Scholar 

  • Pilpel N, Nezer I, Applebaum SW, Heifetz Y (2008) Mating increases trypsin in female Drosophila hemolymph. Insect Biochem Mol Biol 38:320–330

    Article  PubMed  CAS  Google Scholar 

  • Pitnick S, Markow TA (1994) Male gametic strategies—sperm size, testes size, and the allocation of ejaculate among success mates by the sperm-limited fly Drosophila pachea and its relatives. Am Nat 143:785–819

    Article  Google Scholar 

  • Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60:289–310

    Article  Google Scholar 

  • Radhakrishnan P, Taylor PW (2008) Ability of male Queensland fruit flies to inhibit receptivity in multiple mates, and the associated recovery of accessory glands. J Insect Physiol 54:421–428

    Article  PubMed  CAS  Google Scholar 

  • Ravi Ram K, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445

    Article  Google Scholar 

  • Ravi Ram K, Ji S, Wolfner MF (2005) Fates and targets of male accessory gland proteins in mated female Drosophila melanogaster. Insect Biochem Mol Biol 35:1059–1071

    Article  PubMed  CAS  Google Scholar 

  • Ravi Ram K, Sirot LK, Wolfner MF (2006) Predicted seminal astacin-like protease is required for processing of reproductive proteins in Drosophila melanogaster. Proc Natl Acad Sci USA 103:18674–18679

    Article  PubMed  Google Scholar 

  • Rheault MR, Okech BA, Keen SBW, Miller MM, Meleshkevitch EA, Linser PJ, Boudko DY, Harvey WR (2007) Molecular cloning, phylogeny and localization of AgNHA1: the first Na+/H+ antiporter (NHA) from a metazoan, Anopheles gambiae. J Exp Biol 210:3848–3861

    Article  PubMed  CAS  Google Scholar 

  • Robertson SA (2005) Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res 322:43–52

    Article  PubMed  Google Scholar 

  • Robertson SA (2007) Seminal fluid signaling in the female reproductive tract: Lessons from rodents and pigs. J Anim Sci 85:E36–E44

    Article  PubMed  CAS  Google Scholar 

  • Rogers DW, Chapman T, Fowler K, Pomiankowski A (2005) Mating-induced reduction in accessory reproductive organ size in the stalk-eyed fly Cyrtodiopsis dalmanni. BMC Evol Biol 18:642–650

    CAS  Google Scholar 

  • Savalli UM, Fox CW (1999) The effect of male size, age, and mating behavior on sexual selection in the seed beetle Callosobruchus maculatus. Ethol Ecol Evol 11:49–60

    Google Scholar 

  • Schmidt T, Chen PS, Pellegrini M (1985) The induction of ribosome biosynthesis in a nonmitotic secretory tissue. J Biol Chem 280:7645–7650

    Google Scholar 

  • Simmerl E, Schäfer M, Schäfer U (1995) Structure and regulation of a gene cluster for male accessory gland transcripts in Drosophila melanogaster. Insect Biochem Mol Biol 25:127–137

    Article  PubMed  CAS  Google Scholar 

  • Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, Harrington LC (2008) Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol 38:176–189

    Article  PubMed  CAS  Google Scholar 

  • Smith PH, Gillott C, Browne LB, Vangerwen ACM (1990) The mating induced refractoriness of Lucilia cuprina females- manipulating the male contribution. Physiol Entomol 15:469–481

    Google Scholar 

  • Styger D (1992) Molekulare analyse des sexpeptidgens aus Drosophila melanogaster. Dissertation, University of Zurich

  • Svärd L, Wiklund C (1986) Different ejaculate delivery strategies in 1st versus subsequent matings in the swallowtail butterfly Papilio machaon L. Behav Ecol Sociobiol 18:325–330

    Article  Google Scholar 

  • Svärd L, Wiklund C (1989) Mass and production rate of ejaculates in relation to monandry and polyandry in butterflies. Behav Ecol Sociobiol 24:395–402

    Article  Google Scholar 

  • Torres-Vila LM, Jennions MD (2005) Male mating history and female fecundity in the Lepidoptera: do male virgins make better partners? Behav Ecol Sociobiol 57:318–326

    Article  Google Scholar 

  • Tripet F, Toure YT, Dolo G, Lanzaro GC (2003) Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg 68:1–5

    PubMed  Google Scholar 

  • Vahed K (2007) Comparative evidence for a cost to males of manipulating females in bushcrickets. Behav Ecol 18:499–506

    Article  Google Scholar 

  • Veveris-Lowe TL, Kruger SJ, Walsh T, Gardiner RA, Clements JA (2007) Seminal fluid characterization for male fertility and prostate cancer: Kallikrein-related serine proteases and whole proteome approaches. Semin Thromb Hemost 33:87–99

    Article  PubMed  CAS  Google Scholar 

  • Walters JR, Harrison RG (2008) EST analysis of male accessory glands from Heliconius butterflies with divergent mating systems. BMC Genomics 9:592

    Article  PubMed  Google Scholar 

  • Wedell N, Gage MJG, Parker GA (2002) Sperm competition, male prudence and sperm-limited females. Trends Ecol Evol 17:313–320

    Article  Google Scholar 

  • Whittier TS, Kaneshiro KY (1991) Male mating success and female fitness in the Mediterranean fruit-fly (Diptera, Tephritidae). Ann Entomol Soc Am 84:608–611

    Google Scholar 

  • Wigby S, Sirot LK, Linklater JR, Buehner N, Calboli FCF, Bretman A, Wolfner MF, Chapman T (2009) Seminal fluid proteins allocation and reproductive success. Curr Biol 19:1–7

    Article  Google Scholar 

  • Wojtczak M, Calka J, Glogowski J, Ciereszko A (2007) Isolation and characterization of alpha 1-proteinase inhibitor from common carp (Cyprinus carpio) seminal plasma. Comp Biochem Physiol B 148:264–276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lisa Daley and Judy Appleton for providing training in ELISAs and Tom Giardina, Andrew Orapallo, Dustin Rubinstein, and Shawna Tonick for helping with the experiments. We are grateful to Andrew Clark for statistical insights and for the use of his plate reader. Eric Kubli generously provided sex peptide antiserum. Frank Avila, Lauren Cator, Michelle Helinski, Mari Kimura, Brooke LaFlamme, Lisa McGraw, and Peter Piermarini provided valuable insights for the writing of this manuscript. We thank Dennis Hartley for access to Little Tree Orchards for our studies of wild D. melanogaster. The research was funded by a Ruth L. Kirschstein National Research Service Award Post-Doctoral Fellowship (1F32GM074361) to L.K.S., a National Science Foundation grant (DEB-0746915) to A.C.F, and a National Institutes of Health grant (HD38921) to M.F.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Sirot.

Additional information

Communicated by N. Wedell

Norene A. Buehner and Anthony C. Fiumera contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirot, L.K., Buehner, N.A., Fiumera, A.C. et al. Seminal fluid protein depletion and replenishment in the fruit fly, Drosophila melanogaster: an ELISA-based method for tracking individual ejaculates. Behav Ecol Sociobiol 63, 1505–1513 (2009). https://doi.org/10.1007/s00265-009-0806-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00265-009-0806-6

Keywords

Navigation