Skip to main content
Log in

Associative learning of non-nestmate odor marks between colonies of the stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) during foraging

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Stingless bees use chemical signals to communicate nestmates the location of rich food sources. Such information may be intercepted by conspecifics from other colonies. In this study, we investigated if chemical information from non-nestmates can be used to orient foragers of the stingless bee Scaptotrigona mexicana to food sources. In the first experiment, foragers were exposed to feeders that were differentially odor-marked by nestmates and non-nestmates, and their preferences for both types of feeders were recorded. In a second experiment, we marked different feeders with mandibular or labial gland extracts of nestmates and non-nestmates. Results from the first experiment indicate that foragers were able to associate odor marks from non-nestmates with rich food sources. In the second experiment, we observed that foragers did not differentiate between the gland extracts of nestmates and those from non-nestmates. We discuss these findings within a behavioral and ecological framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barth FG, Hrncir M, Jarau S (2008) Signals and cues in the recruitment behavior of stingless bees (Meliponini). J Comp Physiol A 194:313–327

    Article  Google Scholar 

  • Boogert NJ, Hofstede FE, Monge IA (2006) The use of food source scent marks by the stingless bee Trigona corvina (Hymenoptera: Apidae): the importance of the depositor’s identity. Apidologie 37:366

    Article  Google Scholar 

  • Buchwald R, Breed MD (2005) Nestmate recognition cues in a stingless bee, Trigona fulviventris. Anim Behav 70:1331–1337

    Article  Google Scholar 

  • Chapman RE, Wang J, Bourke AFG (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators. Mol Ecol 12:2801–2808

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Landim C, Ferreira-Caliman M, Gracioli-Vitti L, Zucchi R (2013) Correlation between mandibular gland secretion and cuticular hydrocarbons in the stingless bee Melipona quadrifasciata. Genet Mol Res 11:966–977

    Article  CAS  Google Scholar 

  • Cruz-López L, Aguilar S, Malo E, Rincón M, Guzman M, Rojas J (2007) Electroantennogram and behavioral responses of workers of the stingless bee Oxytrigona mediorufa to mandibular gland volatiles. Entomol Exp Appl 123:43–47

    Article  Google Scholar 

  • Cruz-López L, Malo EA, Morgan ED, Rincon M, Guzmán M, Rojas JC (2005) Mandibular gland secretion of Melipona beecheii: chemistry and behavior. J Chem Ecol 31:1621–1632

    Article  PubMed  CAS  Google Scholar 

  • Downs SG, Ratnieks FLW (1999) Recognition of conspecifics by honeybee guards uses nonheritable cues acquired in the adult stage. Anim Behav 58:643–648

    Article  PubMed  CAS  Google Scholar 

  • Goodale E, Beauchamp G, Magrath RD, Nieh JC, Ruxton GD (2010) Interspecific information transfer influences animal community structure. Trends Ecol Evol 25:354–361

    Article  PubMed  Google Scholar 

  • Hrncir M, Barth FG, Tautz J (2006) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulous S, Claridge MF (eds) Insect sounds and communication: physiology, behaviour, ecology, and evolution. CRC Press, Boca Raton, pp 421–436

    Google Scholar 

  • Hubbell SP, Johnson LK (1978) Comparative foraging behavior of six stingless bee species exploiting a standardized resource. Ecology 59:1123–1136

    Article  Google Scholar 

  • Jarau S (2009) Chemical communication during food exploitation in stingless bees. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological, behavioral, and theoretical approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 223–249

    Chapter  Google Scholar 

  • Jarau S, Dambacher J, Twele R, Aguilar I, Fracke W, Ayasse M (2010) The trail pheromone of a stingless bee, Trigona corvina (Hymenoptera, Apidae, Meliponini), varies between populations. Chem Senses 35:593–601

    Article  PubMed  CAS  Google Scholar 

  • Jarau S, Hrncir M, Schmidt VM, Zucchi R, Barth FG (2003) Effectiveness of recruitment behavior in stingless bees (Apidae, Meliponini). Insec Soc 50:365–374

    Article  Google Scholar 

  • Jarau S, Hrncir M, Zucchi R, Barth F (2004) A stingless bee uses labial gland secretions for scent trail communication (Trigona recursa Smith 1863). J Comp Physiol A 190:223–239

    Article  Google Scholar 

  • John L, Aguilar I, Ayasse M, Jarau S (2012) Nest-specific composition of the trail pheromone of the stingless bee Trigona corvina within populations. Insec Soc 59:527–532

    Article  Google Scholar 

  • Leadbeater E, Chittka L (2009) Bumble-bees learn the value of social cues through experience. Biol Lett rsbl-2008.0692

  • Leonhardt SD (2017) Chemical Ecology of Stingless Bees. J Chem Ecol 43:385–402

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg EM, Hrncir M, Turatti IC, Nieh JC (2011) Olfactory eavesdropping between two competing stingless bee species. Behav Ecol Sociobiol 65:763–774

    Article  PubMed  Google Scholar 

  • Lindauer M, Kerr WE (1960) Communication between the workers of stingless bees. Bee World 41:29–41, 65–71

    Article  Google Scholar 

  • Mikery-Pacheco O, Solórzano-Gordillo E, Sánchez-Guillén D (2013) Método de marcaje masivo de abejas Apis mellifera (Hymenoptera: Apidae) para estudios ecoetológicos. Acta Zool Mex 29:248–251

    Google Scholar 

  • Nieh J, Barreto L, Contrera F, Imperatriz-Fonseca V (2004) Olfactory eavesdropping by a competitively foraging stingless bee, Trigona spinipes. Proc R Soc Lond B Biol Sci 271:1633–1640

    Article  Google Scholar 

  • Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182

    Article  Google Scholar 

  • Nieh JC, Contrera FA, Nogueira–Neto P (2003a) Pulsed mass recruitment by a stingless bee, Trigona hyalinata. Proc R Soc Lond B Biol Sci 270:2191–2196

    Article  Google Scholar 

  • Nieh JC, Contrera FAL, Rangel J, Imperatriz-Fonseca VL (2003b) Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav Ecol Sociobiol 55:87–94

    Article  Google Scholar 

  • Nieh JC, Sánchez D (2005) Effect of food quality, distance and height on thoracic temperature in the stingless bee Melipona panamica. J Exp Biol 208:3933

    Article  PubMed  Google Scholar 

  • Nunes TM, Nascimento FS, Turatti IC, Lopes NP, Zucchi R (2008) Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim Behav 75:1165–1171

    Article  Google Scholar 

  • Nunes TM, von Zuben LG, Costa L, Venturieri GC (2014) Defensive repertoire of the stingless bee Melipona flavolineata Friese (Hymenoptera: Apidae). Sociobiology 61:541–546

    Article  Google Scholar 

  • Pohlert T (2014) The pairwise multiple comparison of mean ranks package (PMCMR). R package

  • R Development Core Team (2012) R: a language and environment for statistical computing. Vienna, Austria

  • Reichle C, Aguilar I, Ayasse M, Jarau S (2011) Stingless bees (Scaptotrigona pectoralis) learn foreign trail pheromones and use them to find food. J Comp Physiol A 197:243–249

    Article  CAS  Google Scholar 

  • Reichle C, Aguilar I, Ayasse M, Twele R, Francke W, Jaraua S (2013) Learnt information in species-specific ‘trail pheromone’ communication in stingless bees. An Behav 85:225–232

    Article  Google Scholar 

  • Roselino AC, Rodrigues AV, Hrncir M (2016) Stingless bees (Melipona scutellaris) learn to associate footprint cues at food sources with a specific reward context. J Comp Physiol A 202:657–666

    Article  Google Scholar 

  • Saleh N, Chittka L (2006) The importance of experience in the interpretation of conspecific chemical signals. Behav Ecol Sociobiol 61:215–220

    Article  Google Scholar 

  • Sánchez D, Nieh JC, Hénaut Y, Cruz L, Vandame R (2004) High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Naturwissenschaften 91:346–349

    Article  PubMed  CAS  Google Scholar 

  • Sánchez D, Nieh JC, León A, Vandame R (2009) Food recruitment information can spatially redirect employed stingless bee foragers. Ethology 115:1175–1181

    Article  Google Scholar 

  • Sánchez D, Nieh JC, Vandame R (2008) Experience-based interpretation of visual and chemical information at food sources in the stingless bee Scaptotrigona mexicana. Anim Behav 76:407–414

    Article  Google Scholar 

  • Sánchez D, Nieh JC, Vandame R (2011) Visual and chemical cues provide redundant information in the multimodal recruitment system of the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Insec Soc 58:575–579

    Article  Google Scholar 

  • Sánchez D, Solórzano-Gordillo E, Vandame R (2016) A study on intraspecific resource partitioning in the stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) using behavioral and molecular techniques. Neotrop Entomol 45:518–523

    Article  PubMed  Google Scholar 

  • Schorkopf DLP, Hrncir M, Mateus S, Zucchi R, Schmidt VM, Barth FG (2009) Mandibular gland secretions of meliponine worker bees: further evidence for their role in interspecific and intraspecific defence and aggression and against their role in food source signalling. J Exp Biol 212:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • Seeley TD (1995) The wisdom of the hive: the social physiology of honeybee colonies. Harvard University Press, Cambridge

    Google Scholar 

  • Slaa EJ, Hughes WOH (2009) Local enhancement, local inhibition, eavesdropping, and the parasitism of social insect communication. In: Jarau S, Hrncir M (eds) Food exploitation by social insects. CRC Press, Taylor & Francis Group, Boca Raton, pp 147–164

    Chapter  Google Scholar 

  • Slaa EJ, Wassenberg J, Biesmeijer JC (2003) The use of field-based social information in eusocial foragers: local enhancement among nestmates and heterospecifics in stingless bees. Ecol Entomol 28:369–379

    Article  Google Scholar 

  • Smith B, Roubik D (1983) Mandibular glands of stingless bees (Hymenoptera: Apidae): chemical analysis of their contents and biological function in two species of Melipona. J Chem Ecol 9:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Stephens RE, Beekman M, Gloag R (2017) The upside of recognition error? Artificially aggregated colonies of the stingless bee Tetragonula carbonaria tolerate high rates of worker drift. Biol J Linn Soc 121:258–266

    Article  Google Scholar 

  • Strang CG, Sherry DF (2014) Serial reversal learning in bumblebees (Bombus impatiens). Anim Cogn 17:723–734

    Article  PubMed  Google Scholar 

  • Vit P, Pedro SR, Roubik D (2013) Pot-honey: a legacy of stingless bees. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Waddington KD, Herbert TJ, Visscher PK, Richter MR (1994) Comparisons of forager distributions from matched honey bee colonies in suburban environments. Behav Ecol Sociobiol 35:423–429

    Article  Google Scholar 

  • Waddington KD, Holden LR (1979) Optimal foraging: on flower selection by bees. Am Nat 114:179–196

    Article  Google Scholar 

  • Wilms J, Eltz T (2008) Foraging scent marks of bumblebees: footprint cues rather than pheromone signals. Naturwissenschaften 95:149–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the help of the following people during field and laboratory work: Leonardo Arévalo-Monterrubio, Augusto Campollo-Ovalle, Ricardo Toledo-Hernández, Andy Villarreal Cruz and Miguel Guzmán. This study was possible thanks to the support of SEP-CONACYT agreement no. 128702 “Evolución de la cleptobiosis en Lestrimelitta”, SEP-CONACYT agreement no. 106043 “Land use effect on the conservation of bees’ biodiversity” and UC-MEXUS project “Olfactory eavesdropping and against a cleptoparasite, Lestrimelitta niitkib”. The first autor was supported with a scholarship from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solórzano-Gordillo, E., Rojas, J.C., Cruz-López, L. et al. Associative learning of non-nestmate odor marks between colonies of the stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) during foraging. Insect. Soc. 65, 393–400 (2018). https://doi.org/10.1007/s00040-018-0626-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-018-0626-7

Keywords

Navigation