Skip to main content
Log in

Three-dimensional navigation-guided percutaneous screw fixation for nondisplaced and displaced pelvi-acetabular fractures in a major trauma centre

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Navigation assisted minimally invasive percutaneous screw fixation (MIS) for pelvi-acetabular fracture was recently advocated.

Methods

We report 38 consecutive cases of pelvi-acetabular fractures treated with 3D navigation-guided MIS from 2015 to 2016. Ohe hundred and forty-three screws were inserted (59 sacroiliac, 45 retrograde anterior column, 34 supra-acetabular, three antegrade posterior-column and two subcristal). Navigation planning was mainly performed pre-operatively.

Results

The mean operative blood loss and time was 179 ml and 141 mins, respectively. The distance (deviation) between the planned and executed screw entry and tip measured by the navigation computer were 1.91 and 1.94 mm, respectively. There were no immediate or early surgical complications. Patients were followed for at least 6 month; 79% had fracture healing at 4.3 months on average, and 53% walked unaided by the six month follow-up. The average visual analogue scale for pain was 2.69.

Conclusion

We believe 3D navigation-guided MIS is a safe and effective surgical alternative in most pelvi-acetabular fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zwingmann J, Konrad G, Mehlhorn AT et al (2010) Percutaneous iliosacral screw insertion: malpositioning and revision rate of screws with regards to application technique (navigated vs. conventional). J Trauma 69:1501–1506

    Article  PubMed  CAS  Google Scholar 

  2. Gras F, Marintschev I, Wilharm A, Klos K, Muckley T, Hofmann GO (2010) 2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries— a case series. BMC Musculoskelet Disord 11:153

    Article  PubMed  PubMed Central  Google Scholar 

  3. James MLW, Sam B, Jielin Y et al (2015) Fluoroscopically assisted computer navigation enables accurate percutaneous screw placement for pelvic and acetabular fracture fixation. Injury, Int J Care Injured 46:1064–1068

    Article  Google Scholar 

  4. Behrendt D, Mütze M, Steinke H, Koestler M, Josten C, Böhme J (2012) Evaluation of 2D and 3D navigation for iliosacral screw fixation. Int J CARS 7:249–255

    Article  Google Scholar 

  5. Amir M, David K, Christian K et al (2014) Three-Dimensional Navigation Is More Accurate than Two-Dimensional Navigation or Conventional Fluoroscopy for Percutaneous Sacroiliac Screw Fixation in the Dysmorphic Sacrum: A Randomized Multicenter Study. J Orthop Trauma 28:707–710

    Article  Google Scholar 

  6. Ip KC, Lee KB (2014) Standardised multidisciplinary protocol for haemodynamically unstable pelvic fractures. J Orthop Surg 22(2):177–180

    Article  Google Scholar 

  7. Cheng M, Cheung MT, Lee KY, Lee KB et al (2015) Improvement in institutional protocols leads to decreased mortality in patients with haemodynamically unstable pelvic fractures. Emerg Med J 32(3):214–220. https://doi.org/10.1136/emermed-2012-202009

    Article  PubMed  Google Scholar 

  8. Lau J, Chui KH, Ip KC, Lee KB et al (2016) Improved Survival with a Standardized Multidisciplinary 3-in-1 Pelvic Damage Control Protocol for Hemodynamically Unstable Pelvic Fracture. J Emerg Trauma Care 1:1

    Article  Google Scholar 

  9. Tai DKC et al (2011) Retroperitoneal Pelvic Packing in the Management of Hemodynamically Unstable Pelvic Fractures: A Level I Trauma Center Experience. J Trauma 71(4):E79–E86. https://doi.org/10.1097/TA.0b013e31820cede0

    Article  PubMed  Google Scholar 

  10. Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA (2005) The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Jt Surg Br 87:1520–1523

    Article  CAS  Google Scholar 

  11. Chen KN, Wang G, Cao LG, Zhang MC (2009) Differences of percutaneous retrograde screw fixation of anterior column acetabular fractures between male and female: a study of 164 virtual three- dimensional models. Injury 40:1067–1072

    Article  PubMed  Google Scholar 

  12. Feng XR, Fang JT, Lin C et al (2015) Axial perspective to find the largest intraosseous space available for percutaneous screw fixation of fractures of the acetabular anterior column. Int J CARS 10:1347–1353. https://doi.org/10.1007/s11548-015-1149-6

    Article  Google Scholar 

  13. Gardner MJ, Morshed S, Nork SE et al (2010) Quantification of the upper and second sacral segment safe zones in normal and dysmorphic sacra. J Orthop Trauma 24:622–629

    Article  PubMed  Google Scholar 

  14. Templeman D, Schmidt A, Freese J et al (1996) Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop Relat Res:194–198

  15. Chen H, Tang P, Yao Y, She F, Wang Y (2015) Anatomical study of anterior column screw tunnels through virtual three-dimensional models of the pelvis. Eur J Orthop Surg Traumatol 25:105–110

    Article  PubMed  Google Scholar 

  16. Gras F et al (2012) Screw- versus plate-fixation strength of acetabular anterior column fractures: A biomechanical study. J Trauma Acute Care Surg 72:6. https://doi.org/10.1097/TA.0b013e3182463b45

    Article  Google Scholar 

  17. Kraemer W, Hearn T, Tile M, Powell J (1994) The effect of thread length and location on extraction strengths of iliosacral lag screws. Injury 25:5Y9

    Article  Google Scholar 

  18. Müller F, Füchtmeier B (2013) Percutaneous cement-augmented screw fixation of bilateral osteoporotic sacral fracture. Unfallchirurg 116(10):950–954. https://doi.org/10.1007/s00113-013-2387-0

    Article  PubMed  Google Scholar 

  19. Arand M, Kinzl L, Gebhard F (2004) Computer-guidance in percutaneous screw stabilization of the iliosacral joint. Clin Orthop Relat Res 422:201–207

    Article  Google Scholar 

  20. Dirhold BM et al (2012) Current state of computer-assisted trauma surgery. Curr Rev Musculoskelet Med 5:184–191. https://doi.org/10.1007/s12178-012-9133-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grossterlinden L, Nuechtern J, Begemann PG et al (2011) Computer-assisted surgery and intraoperative three-dimensional imaging for screw placement in different pelvic regions. J Trauma 71:926–932

    Article  PubMed  Google Scholar 

  22. Konrad G, Zwingmann J, Kotter E, Sudkamp N, Oberst M (2010) Variability of the screw position after 3D-navigated sacroiliac screw fixation. Influence of the surgeon’s experience with the navigation technique. Unfallchirurg 113(1):29–35

    Article  PubMed  CAS  Google Scholar 

  23. Wang H, Wang F, Leong APY et al (2016) International Orthopaedics (SICOT) 40:1941. https://doi.org/10.1007/s00264-015-3028-8

    Article  Google Scholar 

  24. Manganaro MS et al (2017) Creating Three-dimensional Printed Models of Acetabular Fractures for Use as Educational Tools. Radiographics 37:871–880

    Article  PubMed  Google Scholar 

  25. Leung KS, Tang N, Cheung WH, Ng WK (2008) Robotic arm in orthopaedic trauma surgery–early clinical experience and a review. Punjab J Orthop 10:5–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King Him Chui.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 3321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chui, K.H., Chan, C.C.D., Ip, K.C. et al. Three-dimensional navigation-guided percutaneous screw fixation for nondisplaced and displaced pelvi-acetabular fractures in a major trauma centre. International Orthopaedics (SICOT) 42, 1387–1395 (2018). https://doi.org/10.1007/s00264-017-3659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3659-z

Keywords

Navigation