Skip to main content

Advertisement

Log in

History of internal fixation with plates (part 2): new developments after World War II; compressing plates and locked plates

  • Orthopaedic Heritage
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

The first techniques of operative fracture with plates were developed in the 19th century. In fact, at the beginning these methods consisted of an open reduction of the fracture usually followed by a very unstable fixation. As a consequence, the fracture had to be opened with a real risk of (sometimes lethal) infection, and due to unstable fixation, protection with a cast was often necessary. During the period between World Wars I and II, plates for fracture fixation developed with great variety. It became increasingly recognised that, because a fracture of a long bone normally heals with minimal resorption at the bone ends, this may result in slight shortening and collapse, so a very rigid plate might prevent such collapse. However, as a consequence, delayed healing was observed unless the patient was lucky enough to have the plate break. One way of dealing with this was to use a slotted plate in which the screws could move axially, but the really important advance was recognition of the role of compression. After the first description of compression by Danis with a “coapteur”, Bagby and Müller with the AO improved the technique of compression. The classic dynamic compression plates from the 1970s were the key to a very rigid fixation, leading to primary bone healing. Nevertheless, the use of strong plates resulted in delayed union and the osteoporosis, cancellous bone, comminution, and/or pathological bone resulted in some failures due to insufficient stability. Finally, new devices represented by locking plates increased the stability, contributing to the principles of a more biological osteosynthesis while giving enough stability to allow immediate full weight bearing in some patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Albert Key J (1932) Positive pressure in arthrodesis for tuberculosis of the knee joint. South Med J 25:909–15

    Article  Google Scholar 

  2. Charnley JC (1948) Positive pressure in arthrodesis of the knee joint. J Bone Joint Surg 30B:478–86

    CAS  Google Scholar 

  3. Danis R (1949) Théorie et pratique de l’ostéosynthèse. Masson, Paris

    Google Scholar 

  4. Venable CS (1951) An impacting bone plate to attain closed coaptation. Ann Surg 133:808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedenberg ZB, French G (1952) The effects of known compression forces on fracture healing. SGO 94:743–748

  6. Bagby GW (1956) The effect of compression on the rate of fracture healing using a special plate. Master’s Thesis, Mayo Clinic

  7. Bagby GW, Janes JMJ (1957) An impacting bone plate. Mayo Clin Proc 32:55–57

    CAS  Google Scholar 

  8. Bagby GW, Janes JM (1958) The effect of compression on the rate of fracture healing using a special plate. Am J Surg 95:761–71

    Article  CAS  PubMed  Google Scholar 

  9. Bagby GW (1977) Compression bone-plating: historical consideration. J Bone Joint Surg 59A:625–31

    Article  Google Scholar 

  10. Müller ME (1961) Principes d’osteosynthese. Helv Chir Acta 28:196–206

    Google Scholar 

  11. Muller A (1963) Technik der operativen frakturenbehandlung. Springer Verlag, Berlin

    Book  Google Scholar 

  12. Müller ME, Allgöwer M, Willenegger H (1965) Compression fixation with plates. In: Technique of internal fixation of fractures. Berlin: Springer pp 47–51

  13. Schenk R, Willenegger H (1967) Morphological findings in primary fracture healing. In: Krompecher S, Kerner E (eds) Callus formation symposium on the biology of fracture healing. Akadémiai Kiadó, Budapest, pp 75–86

    Google Scholar 

  14. Perren SM, Russenberger M, Steinemann S, Müller ME, Allgöwer M (1969) A dynamic compression plate. Acta Orthop Scand Suppl 125:31–41

    CAS  PubMed  Google Scholar 

  15. Perren SM, Cordey J, Rahn BA, Gautier E, Schneider E (1988) Early temporary porosis of bone induced by internal fixation implants: a reaction to necrosis, not to stress protection? Clin Orthop 232:139–51

    Google Scholar 

  16. Kessler SB, Deiler S, Schiffl-Deiler M, Uhthoff HK, Schweiberer L (1992) Refractures: a consequence of impaired local bone viability. Arch Orthop Trauma Surg 111:96–101

    Article  CAS  PubMed  Google Scholar 

  17. Perren SM, Buchanan JS (1995) Basic concepts relevant to the design and development of the point contact fixator (PC-Fix). Injury 26(Suppl 2):S-B-1–4

    Article  Google Scholar 

  18. Tepic S, Perren SM (1995) The biomechanics of the PC-Fix internal fixator. Injury 26(Suppl 2):S-B5–10

    Article  Google Scholar 

  19. Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation; choosing a new balance between stability and biology. J Bone Joint Surg (Br) 84:1093–110

    Article  Google Scholar 

  20. Harrington KD et al (1972) The use of methylmethacrylate as an adjunct in the internal fixation of malignant neoplastic fractures. J Bone Joint Surg 54A:1665–76

    Article  Google Scholar 

  21. Hernigou P, Pariat J (2016) History of internal fixation (part 1): early developments with wires and plates before World War II. Int Orthop. doi:10.1007/s00264-016-3347-4

    Google Scholar 

  22. Reinhold P (1931) Brevet d’invention No 742.618, Paris, cited in Wolter D, Jürgens Ch, Wenzl M, et al.: Titanium internal fixator systems with multidirectionally locked screw position, Trauma Berufskrankenh 2001. (Suppl 4): 425–428

  23. Russell TA (2007) An historical perspective of the development of plate and screw fixation and minimally invasive fracture surgery with a unified biological approach. Tech Orthop 22:186–90

    Article  Google Scholar 

  24. Wolter D (1990) Innovative locking plate system. US Patent 5085660

  25. Ramotowski W, Granowski R (1991) Zespol. An original method of stable osteosynthesis. Clin Orthop Relat Res 272:67–75

    Google Scholar 

  26. Sürer P (1995) Un nouveau matériel d’ostéosynthèse : la plaque à ancrage “SURFIX”® : son utilisation dans les ostéosynthèses métaphyso-épiphysaires du genou. Ann Orthop Ouest 27:125–8

    Google Scholar 

  27. Kolodziej P, Lee FS, Patel A, Kassab SS, Shen KL, Yang KH, Mast JW (1998) Biomechanical evaluation of the Schuhli nut. Clin Orthop 347:79–85

    Article  Google Scholar 

  28. Sommer C (2003) Locking compression plate—LCP—A new AO principle. Injury 34(suppl 2):1–76

    Google Scholar 

  29. el-Sayed A, Said HG, Abdel-Aal A, Farouk O (2001) Locked plate fixation for femoral shaft fractures. Int Orthop 25(4):214–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pretell-Mazzini J, Zafra-Jimenez JA, Rodriguez MJ (2010) Clinical application of locked plating system in children. An orthopaedic view. Int Orthop 34(7):931–8

    Article  PubMed  PubMed Central  Google Scholar 

  31. Röderer G, Erhardt J, Kuster M, Vegt P, Bahrs C, Kinzl L, Gebhard F (2011) Second generation locked plating of proximal humerus fractures--a prospective multicentre observational study. Int Orthop 35(3):425–32

    Article  PubMed  Google Scholar 

  32. Röderer G, Gebhard F, Krischak G, Wilke HJ, Claes L (2011) Biomechanical in vitro assessment of fixed angle plating using a new concept of locking for the treatment of osteoporotic proximal humerus fractures. Int Orthop 35(4):535–41

    Article  PubMed  Google Scholar 

  33. Nikolaou VS, Tan HB, Haidukewych G, Kanakaris N, Giannoudis PV (2011) Proximal tibial fractures: early experience using polyaxial locking-plate technology. Int Orthop 35(8):1215–21

    Article  PubMed  Google Scholar 

  34. Kobbe P, Hockertz I, Sellei RM, Reilmann H, Hockertz T (2012) Minimally invasive stabilisation of posterior pelvic-ring instabilities with a transiliac locked compression plate. Int Orthop 36(1):159–64

    Article  PubMed  Google Scholar 

  35. Lee YS, Wei TY, Cheng YC, Hsu TL, Huang CR (2012) A comparative study of Colles’ fractures in patients between fifty and seventy years of age: percutaneous K-wiring versus volar locking plating. Int Orthop 36(4):789–94

    Article  CAS  PubMed  Google Scholar 

  36. Wähnert D, Stolarczyk Y, Hoffmeier KL, Raschke MJ, Hofmann GO, Mückley T (2012) The primary stability of angle-stable versus conventional locked intramedullary nails. Int Orthop 36(5):1059–64

    Article  PubMed  Google Scholar 

  37. Konrad G, Hirschmüller A, Audige L, Lambert S, Hertel R, Südkamp NP (2012) Comparison of two different locking plates for two-, three- and four-part proximal humeral fractures--results of an international multicentre study. Int Orthop 36(5):1051–8

    Article  PubMed  Google Scholar 

  38. Nowak TE, Burkhart KJ, Andres T, Dietz SO, Klitscher D, Mueller LP, Rommens PM (2013) Locking-plate osteosynthesis versus intramedullary nailing for fixation of olecranon fractures: a biomechanical study. Int Orthop 37(5):899–903

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pohlemann T, Gueorguiev B, Agarwal Y, Wahl D, Sprecher C, Schwieger K, Lenz M (2015) Dynamic locking screw improves fixation strength in osteoporotic bone: an in vitro study on an artificial bone model. Int Orthop 39(4):761–8

    Article  PubMed  Google Scholar 

  40. Cronier P, Pietu G, Dujardin C, Bigorre N, Ducellier F, Gerard R (2010) The concept of locking plates. Orthop Traumatol Surg Res 496(S):S17–S36. doi:10.1016/j.otsr.2010.03.008

    Article  Google Scholar 

  41. Foux A, Yeadon AJ, Uhthoff HK (1997) Improved fracture healing with less rigid plates: a biomechanical study in dogs. Clin Orthop 339:232–45

    Article  Google Scholar 

  42. Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg 84B:1093–110

    Article  Google Scholar 

  43. Gautier E, Sommer C (2003) Guidelines for the clinical application of the LCP. Injury 34:SB63–76

    Article  Google Scholar 

  44. Wagner M, Frigg R (eds) (2006) AO manual of fracture management, internal fixators, concept and cases using LCP and LISS. Thieme, Stuttgart

    Google Scholar 

  45. Perren SM, Perren T, Schneider E (2003) Are the terms “biology” and “osteosynthesis” contradictory? Ther Umsch 60:713–721

    Article  CAS  PubMed  Google Scholar 

  46. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM (2009) Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am 91:1985–1994

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gardner MJ, Nork SE, Huber P, Krieg JC (2010) Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots. Injury 41:652–656

    Article  PubMed  Google Scholar 

  48. Dobele S, Horn C, Eichhorn S, Buchholtz A, Lenich A et al (2010) The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck’s Arch Surg 395:421–428

    Article  Google Scholar 

  49. Kubiak EN, Fulkerson E, Strauss E, Egol KA (2006) The evolution of locked plates. J Bone Joint Surg Am 88(Suppl 4):189–200

    PubMed  Google Scholar 

  50. Smith WR, Ziran BH, Anglen JO, Stahel PF (2008) Locking plates: tips and tricks. Instr Course Lect 57:25–36

    PubMed  Google Scholar 

  51. Stoffel K, Dieter U, Stachowiak G, Gächter A, Kuster MS (2003) Biomechanical testing of the LCP – how can stability in locked internal fixators be controlled? Injury 34:11–19

    Article  Google Scholar 

  52. Hernigou P, Queinnec S, Picard L, Guissou I, Naanaa T, Duffiet P, Julian D, Archer V (2013) Safety of a novel high tibial osteotomy locked plate fixation for immediate full weight-bearing: a case–control study. Int Orthop 37(12):2377–84

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hernigou P, Flouzat Lachaniette C, Delambre J, Guissou I, Dahmani O, Ibrahim Ouali M, Poignard A (2015) Full weight bearing and dynamisation with Limmed® locked plate fixation accelerates bone regeneration in the volume of opening wedge high tibial osteotomy. Int Orthop 39(7):1295–300

    Article  PubMed  Google Scholar 

  54. Hanschen M, Aschenbrenner IM, Fehske K, Kirchhoff S, Keil L, Holzapfel BM, Winkler S, Fuechtmeier B, Neugebauer R, Luehrs S, Liener U, Biberthaler P (2014) Mono- versus polyaxial locking plates in distal femur fractures: a prospective randomized multicentre clinical trial. Int Orthop 38(4):857–63

    Article  PubMed  Google Scholar 

  55. Rausch S, Klos K, Wolf U, Gras M, Simons P, Brodt S, Windolf M, Gueorguiev B (2014) A biomechanical comparison of fixed angle locking compression plate osteosynthesis and cement augmented screw osteosynthesis in the management of intra articular calcaneal fractures. Int Orthop 38(8):1705–10

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu Y, Li H, Zhang Y (2014) Mono versus polyaxial locking plates in distal femur fractures: a prospective randomized multicentre clinical trial. Int Orthop 38(7):1543

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ebraheim N, Carroll T, Moral MZ, Lea J, Hirschfeld A, Liu J (2014) Interprosthetic femoral fractures treated with locking plate. Int Orthop 38(10):2183–9

    Article  PubMed  Google Scholar 

  58. Ellwein A, Lill H, Voigt C, Wirtz P, Jensen G, Katthagen JC (2015) Arthroplasty compared to internal fixation by locking plate osteosynthesis in comminuted fractures of the distal humerus. Int Orthop 39(4):747–54

    Article  PubMed  Google Scholar 

  59. Zhang F, Zhu L, Yang D, Yang P, Ma J, Fu Q, Chen A (2015) Comparison between the spatial subchondral support plate and the proximal humeral locking plate in the treatment of unstable proximal humeral fractures. Int Orthop 39(6):1167–73

    Article  PubMed  Google Scholar 

  60. Gwinner C, Märdian S, Dröge T, Schulze M, Raschke MJ, Stange R (2015) Bicortical screw fixation provides superior biomechanical stability but devastating failure modes in periprosthetic femur fracture care using locking plates. Int Orthop 39(9):1749–55

    Article  PubMed  Google Scholar 

  61. Zhou Y, Wang Y, Liu L, Zhou Z, Cao X (2015) Locking compression plate as an external fixator in the treatment of closed distal tibial fractures. Int Orthop 39(11):2227–37

    Article  PubMed  Google Scholar 

  62. Piątkowski K, Piekarczyk P, Kwiatkowski K, Przybycień M, Chwedczuk B (2015) Comparison of different locking plate fixation methods in distal tibia fractures. Int Orthop 39(11):2245–51

    Article  PubMed  Google Scholar 

  63. Ehlinger M, Adamczewski B, Rahmé M, Adam P, Bonnomet F (2015) Comparison of the pre-shaped anatomical locking plate of 3.5 mm versus 4.5 mm for the treatment of tibial plateau fractures. Int Orthop 39(12):2465–71

    Article  PubMed  Google Scholar 

  64. Chang H, Zhu Y, Zheng Z, Chen W, Zhao S, Zhang Y, Zhang Y (2016) Meta-analysis shows that highly comminuted bicondylar tibial plateau fractures treated by single lateral locking plate give similar outcomes as dual plate fixation. Int Orthop 40(10):2129–2141

    Article  PubMed  Google Scholar 

  65. Carrera I, Gelber PE, Chary G, González-Ballester MA, Monllau JC, Noailly J (2016) Fixation of a split fracture of the lateral tibial plateau with a locking screw plate instead of cannulated screws would allow early weight bearing: a computational exploration. Int Orthop 40(10):2163–2169

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Hernigou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

There is no funding source.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernigou, P., Pariat, J. History of internal fixation with plates (part 2): new developments after World War II; compressing plates and locked plates. International Orthopaedics (SICOT) 41, 1489–1500 (2017). https://doi.org/10.1007/s00264-016-3379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3379-9

Keywords

Navigation