Skip to main content
Log in

Functional joint line obliquity after kinematic total knee arthroplasty

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Kinematic total knee arthroplasty (TKA) is an emerging technique, but concerns remain around the effect of implanting the prosthesis in more anatomic orientations. Native knees show variation in joint line orientation relative to the tibial mechanical axis but the joint line remains parallel to the floor when standing. This study was undertaken to evaluate joint line obliquity relative to the floor when weight-bearing after kinematic TKA to see if a similar effect occurs.

Methods

Preoperative and postoperative measurements were taken for 55 consecutive kinematically aligned TKAs, including the joint line orientation angle (JLOA), formed between the joint line and a line parallel to the floor.

Results

The mean medial proximal tibial angle (MPTA) was 3.4° varus pre-operatively (1.7° valgus to 7.9° varus, SD 2.0), and 3.0° varus postoperatively (5.5° valgus to 6.5° varus, SD 2.1). The mean postoperative JLOA was 1.0° varus with a smaller range than the MPTA (2.6° valgus to 6° varus, SD 1.9). The difference between these two measurements was significant (mean 2°, SD 2.5, p < 0.001).

Conclusions

Relative to the mechanical axis, 33 tibial components would be considered at risk outliers, being orientated at more than 3° in varus or valgus. However, only six components were outside this range relative to the vertical, all in varus (mean 4.2°). This latter measurement may better represent how the prosthesis is functionally loaded and is similar to mechanically aligned TKAs with good survivorship. This may help explain why kinematic alignment does not lead to higher earlier failure rates that may result if similar orientations were seen with mechanically aligned TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rodricks DJ, Patil S, Pulido P, Colwell CW (2007) Press-fit condylar design total knee arthroplasty. Fourteen to seventeen-year follow-up. J Bone Joint Surg Am 89:89–95. doi:10.2106/JBJS.E.00492

    Article  PubMed  Google Scholar 

  2. Gill GS, Joshi AB, Mills DM (1999) Total condylar knee arthroplasty. 16- to 21-year results. Clin Orthop 367:210–215

    PubMed  Google Scholar 

  3. Font-Rodriguez DE, Scuderi GR, Insall JN (1997) Survivorship of cemented total knee arthroplasty. Clin Orthop 345:79–86

    PubMed  Google Scholar 

  4. Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am 69:745–749

    PubMed  CAS  Google Scholar 

  5. Hsu RW, Himeno S, Coventry MB, Chao EY (1990) Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop 255:215–227

    PubMed  Google Scholar 

  6. Victor JMK, Bassens D, Bellemans J et al (2014) Constitutional varus does not affect joint line orientation in the coronal plane. Clin Orthop 472:98–104. doi:10.1007/s11999-013-2898-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gu Y, Roth JD, Howell SM, Hull ML (2014) How frequently do four methods for mechanically aligning a total knee arthroplasty cause collateral ligament imbalance and change alignment from normal in white patients? AAOS Exhibit Selection. J Bone Joint Surg Am 96:e101. doi:10.2106/JBJS.M.00306

    Article  PubMed  Google Scholar 

  8. Baker PN, van der Meulen JH, Lewsey J, Gregg PJ (2007) The role of pain and function in determining patient satisfaction after total knee replacement. Data from the National Joint Registry for England and Wales. J Bone Joint Surg (Br) 89-B:893–900. doi:10.1302/0301-620X.89B7.19091

    Article  Google Scholar 

  9. Bourne RB, Chesworth BM, Davis AM et al (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop 468:57–63. doi:10.1007/s11999-009-1119-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hollister AM, Jatana S, Singh AK et al (1993) The axes of rotation of the knee. Clin Orthop 290:259–268

    PubMed  Google Scholar 

  11. Howell SM, Hull ML (2012) Kinematically aligned TKA with MRI-based cutting guides. In: Thienpont E (ed) Improving accuracy in knee arthroplasty. Jaypee Brothers Medical Publishers, New Delhi, pp 207–232

  12. Bellemans J, Colyn W, Vandenneucker H, Victor J (2012) The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop 470:45–53. doi:10.1007/s11999-011-1936-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Howell SM, Papadopoulos S, Kuznik KT, Hull ML (2013) Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg Sports Traumatol Arthrosc 21:2271–2280. doi:10.1007/s00167-013-2621-x

    Article  PubMed  Google Scholar 

  14. Howell SM, Howell SJ, Kuznik KT et al (2013) Does a kinematically aligned total knee arthroplasty restore function without failure regardless of alignment category? Clin Orthop 471:1000–1007. doi:10.1007/s11999-012-2613-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Paley D (2002) Principles of deformity correction. Springer, Berlin

  16. Cherian JJ, Kapadia BH, Banerjee S et al (2014) Mechanical, anatomical, and kinematic axis in TKA: concepts and practical applications. Curr Rev Musculoskelet Med 7:89–95. doi:10.1007/s12178-014-9218-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dossett HG, Swartz GJ, Estrada NA et al (2012) Kinematically versus mechanically aligned total knee arthroplasty. Orthopedics 35:e160–e169. doi:10.3928/01477447-20120123-04

    PubMed  Google Scholar 

  18. Kastner N, Sternbauer S, Friesenbichler J et al (2013) Impact of the tibial slope on range of motion after low-contact-stress, mobile-bearing, total knee arthroplasty. Int Orthop 38:291–295. doi:10.1007/s00264-013-2242-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shi X, Shen B, Kang P et al (2013) The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 21:2696–2703. doi:10.1007/s00167-012-2058-7

    Article  Google Scholar 

  20. Werner FW, Ayers DC, Maletsky LP, Rullkoetter PJ (2005) The effect of valgus/varus malalignment on load distribution in total knee replacements. J Biomech 38:349–355. doi:10.1016/j.jbiomech.2004.02.024

    Article  PubMed  Google Scholar 

  21. Fang DM, Ritter MA, Davis KE (2009) Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty 24:39–43. doi:10.1016/j.arth.2009.04.034

    Article  PubMed  Google Scholar 

  22. Ritter MA, Davis KE, Meding JB et al (2011) The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am 93:1588–1596. doi:10.2106/JBJS.J.00772

    Article  PubMed  Google Scholar 

  23. Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg (Br) 73:709–714

    CAS  Google Scholar 

  24. Pang H-N, Jamieson P, Teeter MG et al (2014) Retrieval analysis of posterior stabilized polyethylene tibial inserts and its clinical relevance. J Arthroplasty 29:365–368. doi:10.1016/j.arth.2013.05.029

    Article  PubMed  Google Scholar 

  25. Collier MB, Engh CA, McAuley JP, Engh GA (2007) Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty. J Bone Joint Surg Am 89:1306–1314. doi:10.2106/JBJS.F.00667

    Article  PubMed  Google Scholar 

  26. Bonner TJ, Eardley WGP, Patterson P, Gregg PJ (2011) The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years. J Bone Joint Surg (Br) 93:1217–1222. doi:10.1302/0301-620X.93B9.26573

    Article  CAS  Google Scholar 

  27. Parratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am 92:2143–2149. doi:10.2106/JBJS.I.01398

    Article  PubMed  Google Scholar 

  28. Morgan SS, Bonshahi A, Pradhan N et al (2008) The influence of postoperative coronal alignment on revision surgery in total knee arthroplasty. Int Orthop 32:639–642. doi:10.1007/s00264-007-0391-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dossett HG, Estrada NA, Swartz GJ et al (2014) A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results. Bone Jt J 96-B:907–913. doi:10.1302/0301-620X.96B7.32812

    Article  CAS  Google Scholar 

  30. Matsuzaki T, Matsumoto T, Muratsu H et al (2013) Kinematic factors affecting postoperative knee flexion after cruciate-retaining total knee arthroplasty. Int Orthop 37:803–808. doi:10.1007/s00264-013-1803-y

    Article  PubMed  PubMed Central  Google Scholar 

  31. Digennaro V, Zambianchi F, Marcovigi A et al (2014) Design and kinematics in total knee arthroplasty. Int Orthop 38:227–233. doi:10.1007/s00264-013-2245-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal-André Vendittoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutt, J., Massé, V., Lavigne, M. et al. Functional joint line obliquity after kinematic total knee arthroplasty. International Orthopaedics (SICOT) 40, 29–34 (2016). https://doi.org/10.1007/s00264-015-2733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2733-7

Keywords

Navigation