Skip to main content
Log in

Case Report: Reconstruction of a 16-cm Diaphyseal Defect after Ewing’s Resection in a Child

  • Case Report
  • Published:
Clinical Orthopaedics and Related Research

Abstract

Numerous options exist for intercalary segmental reconstruction after bone tumor resection. We present the extension of a recently developed surgical two-stage technique that involves insertion of a cement spacer, induction of a membrane, and reconstruction of the defect with cancellous and cortical bone autograft in a 12-year-old child. The boy was referred to our center for treatment of a right femoral diaphyseal Ewing’s sarcoma. The first stage involved resection of the tumor and reconstruction with a locked intramedullary nail and a polymethylmethacrylate cement spacer. Seven months after the initial procedure during which adjuvant chemotherapy was given, the second-stage procedure was performed. The cement was removed and cancellous and cortical bone autograft was grafted in the membrane created around the cement spacer. Touchdown weightbearing was allowed immediately, partial weightbearing was resumed 6 weeks after the operation, and full weightbearing was allowed 4 months later. Successive plain radiographs showed rapid integration of the autograft to the host bone with bone union and cortical reconstitution. The principle of the induced membrane reconstruction seems applicable to intercalary segmental reconstruction after bone tumor resection in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A–B

References

  1. Abudu A, Carter SR, Grimer RJ. The outcome and functional results of diaphyseal endoprostheses after tumour excision. J Bone Joint Surg Br. 1996;78:652–657.

    PubMed  CAS  Google Scholar 

  2. Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002;84:716–720.

    Article  PubMed  Google Scholar 

  3. Aldlyami E, Abudu A, Grimer RJ, Carter SR, Tillman RM. Endoprosthetic replacement of diaphyseal bone defects: long-term results. Int Orthop. 2005;29:25–29.

    Article  PubMed  CAS  Google Scholar 

  4. Alman BA, De Bari A, Krajbich JI. Massive allografts in the treatment of osteosarcoma and Ewing sarcoma in children and adolescents. J Bone Joint Surg Am. 1995;77:54–64.

    PubMed  CAS  Google Scholar 

  5. Chen YC, Chen CH, Chen PL, Huang IY, Shen YS, Chen CM. Donor site morbidity after harvesting of proximal tibia bone. Head Neck. 2006;28:496–500.

    Article  PubMed  Google Scholar 

  6. Dormans JP, Ofluoglu O, Erol B, Moroz L, Davidson RS. Case report: reconstruction of an intercalary defect with bone transport after resection of Ewing’s sarcoma. Clin Orthop Relat Res. 2005;434:258–264.

    Article  PubMed  Google Scholar 

  7. El-Gammal TA, El-Sayed A, Kotb MM. Reconstruction of lower limb bone defects after sarcoma resection in children and adolescents using free vascularized fibular transfer. J Pediatr Orthop B. 2003;12:233–243.

    Article  PubMed  Google Scholar 

  8. Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop Relat Res. 1980;153:106–120.

    PubMed  Google Scholar 

  9. EURO-EWING 99: European Ewing Tumour Working Initiative of National Groups. Available at: http://controlled-trials.com/ISRCTN61438620/61438620. Accessed September 11, 2008.

  10. Freund R, Wolff TW, Freund B. Silicone block interposition for traumatic bone loss. Orthopedics. 2000;23:795, 799, 802, 804.

    Google Scholar 

  11. Fuchs B, Ossendorf C, Leerapun T, Sim FH. Intercalary segmental reconstruction after bone tumor resection. Eur J Surg Oncol. 2008 Jan 11 [Epub ahead of print].

  12. Gugala Z, Gogolewski S. Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study. J Orthop Trauma. 1999;13:187–195.

    Article  PubMed  CAS  Google Scholar 

  13. Hornicek FJ, Gebhardt MC, Tomford WW, Sorger JI, Zavatta M, Menzner JP, Mankin HJ. Factors affecting nonunion of the allograft-host junction. Clin Orthop Relat Res. 2001;382:87–98.

    Article  PubMed  Google Scholar 

  14. Hsu RW, Wood MB, Sim FH, Chao EY. Free vascularised fibular grafting for reconstruction after tumour resection. J Bone Joint Surg Br. 1997;79:36–42.

    Article  PubMed  Google Scholar 

  15. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft [in French]. Ann Chir Plast Esthet. 2000;45:346–353.

    PubMed  CAS  Google Scholar 

  16. Ozaki T, Hillmann A, Bettin D, Wuisman P, Winkelmann W. Intramedullary, antibiotic-loaded cemented, massive allografts for skeletal reconstruction: 26 cases compared with 19 uncemented allografts. Acta Orthop Scand. 1997;68:387–391.

    Article  PubMed  CAS  Google Scholar 

  17. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22:73–79.

    Article  PubMed  CAS  Google Scholar 

  18. Viateau V, Guillemin G, Calando Y, Logeart D, Oudina K, Sedel L, Hannouche D, Bousson V, Petite H. Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg. 2006;35:445–452.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carl L. Stanitski, (Medical University of South Carolina Charleston, SC) for his wise and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jean Biau MD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc.) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution has approved the reporting of this case report, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

About this article

Cite this article

Biau, D.J., Pannier, S., Masquelet, A.C. et al. Case Report: Reconstruction of a 16-cm Diaphyseal Defect after Ewing’s Resection in a Child. Clin Orthop Relat Res 467, 572–577 (2009). https://doi.org/10.1007/s11999-008-0605-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0605-9

Keywords

Navigation