Skip to main content
Log in

Physiological sagittal plane patellar kinematics during dynamic deep knee flexion

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Lateral radiographic views can be easily taken and have reveal considerable information about the patella. The purpose of this study was to obtain sagittal plane patellar kinematics data through the entire range of knee flexion under weight-bearing conditions.

Methods

Patellar flexion angles relative to the femur and tibia and anterior-posterior and proximal-distal translations of the patella relative to the femur and tibia were measured from 0 to 165° knee flexion in nine healthy knees using dynamic radiographic images.

Results

The patella flexed relative to the femur and tibia by two thirds times and one third times the knee flexion angle, respectively. The patella translated in an arc relative to the femur and tibia as the knee flexed. In early flexion, the superior and centroid points translated anteriorly and then the patella translated posteriorly relative to the femur. All three points of the patella translated posteriorly relative to the tibia during a full range of flexion. An average of four and three millimetres proximal patellar translation relative to the tibia was demonstrated from 0 to 20° and 140 to 160° knee flexion, respectively.

Conclusions

Physiological sagittal plane patellar kinematics, including patellar flexion angles and translations relative to the femur and tibia, showed generally similar patterns for each subject. Measurements of dynamic radiographic images under weight-bearing activities may enhance the opportunity to identify patellar pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 2

Similar content being viewed by others

References

  1. Singerman R, Davy DT, Goldberg VM (1994) Effects of patella alta and patella infera on patellofemoral contact forces. J Biomech 27:1059–1065

    Article  PubMed  CAS  Google Scholar 

  2. Ward SR, Powers CM (2004) The influence of patella alta on patellofemoral joint stress during normal and fast walking. Clin Biomech (Bristol, Avon) 19:1040–1047

    Article  Google Scholar 

  3. Luyckx T, Didden K, Vandenneucker H, Labey L, Innocenti B, Bellemans J (2009) Is there a biomechanical explanation for anterior knee pain in patients with patella alta?: influence of patellar height on patellofemoral contact force, contact area and contact pressure. J Bone Joint Surg Br 91:344–350

    PubMed  CAS  Google Scholar 

  4. Järvelä T, Paakkala T, Kannus P, Järvinen M (2001) The incidence of patellofemoral osteoarthritis and associated findings 7 years after anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Am J Sports Med 29:18–24

    PubMed  Google Scholar 

  5. McWalter EJ, Cibere J, MacIntyre NJ, Nicolaou S, Schulzer M, Wilson DR (2007) Relationship between varus-valgus alignment and patellar kinematics in individuals with knee osteoarthritis. J Bone Joint Surg Am 89:2723–2731

    Article  PubMed  Google Scholar 

  6. Komistek RD, Dennis DA, Mabe JA, Walker SA (2000) An in vivo determination of patellofemoral contact positions. Clin Biomech (Bristol, Avon) 15:29–36

    Article  CAS  Google Scholar 

  7. Stiehl JB, Komistek RD, Dennis DA, Keblish PA (2001) Kinematics of the patellofemoral joint in total knee arthroplasty. J Arthroplasty 16:706–714

    Article  PubMed  CAS  Google Scholar 

  8. Tyler TF, Hershman EB, Nicholas SJ, Berg JH, McHugh MP (2002) Evidence of abnormal anteroposterior patellar tilt in patients with patellar tendinitis with use of a new radiographic measurement. Am J Sports Med 30:396–401

    PubMed  Google Scholar 

  9. Price AJ, Rees JL, Beard DJ, Gill RH, Dodd CA, Murray DM (2004) Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: a comparative in vivo fluoroscopic analysis. J Arthroplasty 19:590–597

    Article  PubMed  Google Scholar 

  10. Rees JL, Beard DJ, Price AJ, Gill HS, McLardy-Smith P, Dodd CA, Murray DW (2005) Real in vivo kinematic differences between mobile-bearing and fixed-bearing total knee arthroplasties. Clin Orthop Relat Res 432:204–209

    Article  PubMed  Google Scholar 

  11. Asano T, Akagi M, Koike K, Nakamura T (2003) In vivo three-dimensional patellar tracking on the femur. Clin Orthop Relat Res 413:222–232

    Article  PubMed  Google Scholar 

  12. Li G, Wuerz TH, DeFrate LE (2004) Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J Biomech Eng 126:314–318

    Article  PubMed  Google Scholar 

  13. Nha KW, Papannagari R, Gill TJ, Van de Velde SK, Freiberg AA, Rubash HE, Li G (2008) In vivo patellar tracking: clinical motions and patellofemoral indices. J Orthop Res 26:1067–1074

    Article  PubMed  Google Scholar 

  14. Seisler AR, Sheehan FT (2007) Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study. IEEE Trans Biomed Eng 54:1333–1341

    Article  PubMed  Google Scholar 

  15. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 321–331

  16. Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res 248:9–12

    PubMed  Google Scholar 

  17. Kurosawa H, Walker PS, Abe S, Garg A, Hunter T (1985) Geometry and motion of the knee for implant and orthotic design. J Biomech 18:487–499

    Article  PubMed  CAS  Google Scholar 

  18. Elias SG, Freeman MA, Gokcay EI (1990) A correlative study of the geometry and anatomy of the distal femur. Clin Orthop Relat Res 260:98–103

    PubMed  Google Scholar 

  19. Moro-oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2007) Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res 25:867–872

    Article  PubMed  Google Scholar 

  20. Hamai S, Moro-Oka TA, Dunbar NJ, Miura H, Iwamoto Y, Banks SA (2013) In vivo healthy knee kinematics during dynamic full flexion. Biomed Res Int 2013:717546

  21. Van de Velde SK, Gill TJ, DeFrate LE, Papannagari R, Li G (2008) The effect of anterior cruciate ligament deficiency and reconstruction on the patellofemoral joint. Am J Sports Med 36:1150–1159

    Article  PubMed  Google Scholar 

  22. Matthews LS, Sonstegard DA, Henke JA (1977) Load bearing characteristics of the patello-femoral joint. Acta Orthop Scand 48:511–516

    Article  PubMed  CAS  Google Scholar 

  23. Amis AA, Senavongse W, Bull AM (2006) Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res 24:2201–2211

    Article  PubMed  Google Scholar 

  24. Mu S, Moro-Oka T, Johal P, Hamai S, Freeman MA, Banks SA (2011) Comparison of static and dynamic knee kinematics during squating. Clin Biotech (Bristol, Avon) 26:106–108

    Google Scholar 

  25. Buff HU, Jones LC, Hungerford DS (1988) Experimental determination of forces transmitted through the patello-femoral joint. J Biomech 21:17–23

    Article  PubMed  CAS  Google Scholar 

  26. Feinstein WK, Noble PC, Kamaric E, Tullos HS (1996) Anatomic alignment of the patellar groove. Clin Orthop Relat Res 331:64–73

    Article  PubMed  Google Scholar 

  27. Hungerford DS, Barry M (1979) Biomechanics of the patellofemoral joint. Clin Orthop Relat Res 144:9–15

    PubMed  Google Scholar 

  28. Jacobsen K, Bertheussen K, Gjerloff CC (1974) Characteristics of the line of Blumensaat. An experimental analysis. Acta Orthop Scand 45:764–771

    Article  PubMed  CAS  Google Scholar 

  29. Defrate LE, Nha KW, Papannagari R, Moses JM, Gill TJ, Li G (2007) The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion. J Biomech 40:1716–1722

    Article  PubMed  Google Scholar 

  30. Tang TS, MacIntyre NJ, Gill HS, Fellows RA, Hill NA, Wilson DR, Ellis RE (2004) Accurate assessment of patellar tracking using fiducial and intensity-based fluoroscopic techniques. Med Image Anal 8:343–351

    Article  PubMed  CAS  Google Scholar 

  31. Fukano M, Fukubayashi T (2009) Motion characteristics of the medial and lateral longitudinal arch during landing. Eur J Appl Physiol 105:387–392

    Article  PubMed  Google Scholar 

  32. Peters A, Sangeux M, Morris ME, Baker R (2009) Determination of the optimal locations of surface-mounted markers on the tibial segment. Gait Posture 29:42–48

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The first author is supported by a Postdoctoral Fellowship from The Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Hamai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamai, S., Dunbar, N.J., Moro-oka, Ta. et al. Physiological sagittal plane patellar kinematics during dynamic deep knee flexion. International Orthopaedics (SICOT) 37, 1477–1482 (2013). https://doi.org/10.1007/s00264-013-1958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-013-1958-6

Keywords

Navigation