Skip to main content
Log in

Investigation of Characteristic Motion Patterns of the Knee Joint During a Weightbearing Flexion

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study aimed to develop and validate a novel flexion axis concept by calculating the points on femoral condyles that could maintain constant heights during knee flexion. Twenty-two knees of 22 healthy subjects were investigated when performing a weightbearing single leg lunge. The knee positions were captured using a validated dual fluoroscopic image system. The points on sagittal planes of the femoral condyles that had minimal changes in heights from the tibial plane along the flexion path were calculated. It was found that the points do formulate a medial-lateral flexion axis that was defined as the iso-height axis (IHA). The six degrees of freedom (6DOF) kinematics data calculated using the IHA were compared with those calculated using the conventional transepicondylar axis and geometrical center axis. The IHA measured minimal changes in proximal–distal translations and varus–valgus rotations along the flexion path, indicating that the IHA may have interesting clinical implications. Therefore, identifying the IHA could provide an alternative physiological reference for improvement of contemporary knee surgeries, such as ligament reconstruction and knee replacement surgeries that are aimed to reproduce normal knee kinematics and medial/lateral soft tissue tensions during knee flexion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References:

  1. Angerame, M. R., D. C. Holst, J. M. Jennings, R. D. Komistek, and D. A. Dennis. Total knee arthroplasty kinematics. J. Arthroplasty. 34:2502–2510, 2019.

    Article  PubMed  Google Scholar 

  2. Asano, T., M. Akagi, K. Tanaka, J. Tamura, and T. Nakamura. In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin. Orthop. Relat. Res. 15:157–166, 2001.

    Article  Google Scholar 

  3. Begum, F. A., B. Kayani, A. A. Magan, J. S. Chang, and F. S. Haddad. Current concepts in total knee arthroplasty : mechanical, kinematic, anatomical, and functional alignment. Bone Jt Open. 2:397–404, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burton, W. S., C. A. Myers, A. Jensen, L. Hamilton, K. B. Shelburne, S. A. Banks, and P. J. Rullkoetter. Automatic tracking of healthy joint kinematics from stereo-radiography sequences. Comput. Biol. Med.139:104945, 2021.

    Article  PubMed  Google Scholar 

  5. Colle, F., N. Lopomo, A. Visani, S. Zaffagnini, and M. Marcacci. Comparison of three formal methods used to estimate the functional axis of rotation: an extensive in-vivo analysis performed on the knee joint. Comput. Methods Biomech. Biomed. Eng. 19:484–492, 2016.

    Article  Google Scholar 

  6. Dhaher, Y. Y., and M. J. Francis. Determination of the abduction-adduction axis of rotation at the human knee: helical axis representation. J. Orthop. Res. 24:2187–2200, 2006.

    Article  PubMed  Google Scholar 

  7. Dimitriou, D., T. Y. Tsai, K. K. Park, A. Hosseini, Y. M. Kwon, H. E. Rubash, and G. Li. Weight-bearing condyle motion of the knee before and after cruciate-retaining TKA: in-vivo surgical transepicondylar axis and geometric center axis analyses. J. Biomech. 49:1891–1898, 2016.

    Article  PubMed  Google Scholar 

  8. Dreyer, M. J., A. Trepczynski, S. H. Hosseini Nasab, I. Kutzner, P. Schütz, B. Weisse, J. Dymke, B. Postolka, P. Moewis, G. Bergmann, G. N. Duda, W. R. Taylor, P. Damm, C. R. Smith, European Society of Biomechanics S.M. Perren Award 2022. Standardized tibio-femoral implant loads and kinematics. J. Biomech. 141(111171):2022, 2022.

    Google Scholar 

  9. Eckhoff, D., C. Hogan, L. DiMatteo, M. Robinson, and J. Bach. Difference between the epicondylar and cylindrical axis of the knee. Clin. Orthop. Relat. Res. 461:238–244, 2007.

    Article  PubMed  Google Scholar 

  10. Feng, Y., T. Y. Tsai, J. S. Li, H. E. Rubash, G. Li, and A. Freiberg. In-vivo analysis of flexion axes of the knee: femoral condylar motion during dynamic knee flexion. Clin. Biomech. (Bristol, Avon). 32:102–107, 2016.

    Article  PubMed  Google Scholar 

  11. Fukagawa, S., S. Matsuda, Y. Tashiro, M. Hashizume, and Y. Iwamoto. Posterior displacement of the tibia increases in deep flexion of the knee. Clin. Orthop. Relat. Res. 468:1107–1114, 2010.

    Article  PubMed  Google Scholar 

  12. Gale, T., and W. Anderst. Tibiofemoral helical axis of motion during the full gait cycle measured using biplane radiography. Med. Eng. Phys. 86:65–70, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gray, H. A., S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane x-ray imaging. J. Orthop. Res. 37:615–630, 2019.

    Article  PubMed  Google Scholar 

  14. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.

    Article  CAS  PubMed  Google Scholar 

  15. Hosseini, N. S. H., C. R. Smith, P. Schütz, P. Damm, A. Trepczynski, R. List, and W. R. Taylor. Length-change patterns of the collateral ligaments during functional activities after total knee arthroplasty. Ann. Biomed. Eng. 48:1396–1406, 2020.

    Article  Google Scholar 

  16. Hyodo, K., T. Masuda, J. Aizawa, T. Jinno, and S. Morita. Hip, knee, and ankle kinematics during activities of daily living: a cross-sectional study. Braz. J. Phys. Ther. 21:159–166, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kayani, B., S. Konan, A. Ayuob, E. Onochie, T. Al-Jabri, and F. S. Haddad. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev. 4:611–617, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li, G., J. S. Li, M. Torriani, and A. Hosseini. Short-term contact kinematic changes and longer-term biochemical changes in the cartilage after ACL reconstruction: a pilot study. Ann. Biomed. Eng. 46:1797–1805, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, G., S. K. Van de Velde, and J. T. Bingham. Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J. Biomech. 41:1616–1622, 2008.

    Article  PubMed  Google Scholar 

  20. Li, G., T. H. Wuerz, and L. E. DeFrate. Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J. Biomech. Eng. 126:314–318, 2004.

    Article  PubMed  Google Scholar 

  21. Li, G., C. Zhou, Z. Zhang, T. Foster, and H. Bedair. Articulation of the femoral condyle during knee flexion. J. Biomech.131:110906, 2022.

    Article  PubMed  Google Scholar 

  22. Mochizuki, T., T. Sato, J. D. Blaha, O. Tanifuji, K. Kobayashi, H. Yamagiwa, S. Watanabe, Y. Koga, G. Omori, and N. Endo. The clinical epicondylar axis is not the functional flexion axis of the human knee. J. Orthop. Sci. 19:451–456, 2014.

    Article  PubMed  Google Scholar 

  23. Most, E., J. Axe, H. Rubash, and G. Li. Sensitivity of the knee joint kinematics calculation to selection of flexion axes. J. Biomech. 37:1743–1748, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Nedopil, A. J., S. M. Howell, and M. L. Hull. Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty? Orthop. Clin. North Am. 47:41–50, 2016.

    Article  PubMed  Google Scholar 

  25. Oussedik, S., C. Scholes, D. Ferguson, J. Roe, and D. Parker. Is femoral component rotation in a TKA reliably guided by the functional flexion axis? Clin. Orthop. Relat. Res. 470:3227–3232, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Postolka, B., W. R. Taylor, R. List, S. F. Fucentese, P. P. Koch, P. Schütz, ISB clinical biomechanics award winner. Tibio-femoral kinematics of natural versus replaced knees: a comparison using dynamic videofluoroscopy. Clin. Biomech. (Bristol, Avon). 96(105667):2022, 2021.

    Google Scholar 

  27. Prieto-Alhambra, D., A. Judge, M. K. Javaid, C. Cooper, A. Diez-Perez, and N. K. Arden. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum Dis. 73:1659–1664, 2014.

    Article  PubMed  Google Scholar 

  28. Qi, W., A. Hosseini, T. Y. Tsai, J. S. Li, H. E. Rubash, and G. Li. In vivo kinematics of the knee during weight bearing high flexion. J. Biomech. 46:1576–1582, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rao, Z., C. Zhou, Q. Zhang, W. A. Kernkamp, J. Wang, L. Cheng, T. E. Foster, H. S. Bedair, and G. Li. There are isoheight points that measure constant femoral condyle heights along the knee flexion path. Knee Surg. Sports Traumatol. Arthrosc. 29:600–607, 2021.

    Article  PubMed  Google Scholar 

  30. Rivière, C., F. Iranpour, E. Auvinet, S. Howell, P. A. Vendittoli, J. Cobb, and S. Parratte. Alignment options for total knee arthroplasty: a systematic review. Orthop. Traumatol. Surg. Res. 103:1047–1056, 2017.

    Article  PubMed  Google Scholar 

  31. Sheehan, F. T. The finite helical axis of the knee joint (a non-invasive in vivo study using fast-PC MRI). J. Biomech. 40:1038–1047, 2007.

    Article  PubMed  Google Scholar 

  32. Thomeer, L., S. Guan, H. Gray, A. Schache, R. de Steiger, and M. Pandy. Six-degree-of-freedom tibiofemoral and patellofemoral joint motion during activities of daily living. Ann. Biomed. Eng. 49:1183–1198, 2021.

    Article  PubMed  Google Scholar 

  33. Victor, J. Rotational alignment of the distal femur: a literature review. Orthop. Traumatol. Surg. Res. 95:365–372, 2009.

    Article  CAS  PubMed  Google Scholar 

  34. Walker, P. S., Y. Heller, G. Yildirim, and I. Immerman. Reference axes for comparing the motion of knee replacements with the anatomic knee. Knee. 18:312–316, 2011.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe, T., T. Muneta, I. Sekiya, and S. A. Banks. Intraoperative joint gaps affect postoperative range of motion in TKAs with posterior-stabilized prostheses. Clin. Orthop. Relat. Res. 471:1326–1333, 2013.

    Article  PubMed  Google Scholar 

  36. Yue, B., K. M. Varadarajan, A. L. Moynihan, F. Liu, H. E. Rubash, and G. Li. Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J. Orthop. Res. 29:40–46, 2011.

    Article  PubMed  Google Scholar 

  37. Zheng, L., R. Carey, E. Thorhauer, S. Tashman, C. Harner, and X. Zhang. In vivo tibiofemoral skeletal kinematics and cartilage contact arthrokinematics during decline walking after isolated meniscectomy. Med. Eng. Phys. 51:41–48, 2018.

    Article  PubMed  Google Scholar 

  38. Zhou, C., Z. Zhang, Z. Rao, T. Foster, H. Bedair, and G. Li. Physiological articular contact kinematics and morphological femoral condyle translations of the tibiofemoral joint. J. Biomech.123:110536, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health (R01AR055612), the Department of Orthopaedic Surgery at Newton-Wellesley Hospital, the Jiangsu provincial government scholarship program, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

JY, CZ, HB, and GL designed the study. YX performed statistical analysis of the data. JY, YX, CZ, TT, and SL performed the data collection, analysis, and assisting in paper writing. JY, YX, TF, HB, and GL interpreted the data and drafted the manuscript. All authors edited, revised, and approved the final version. GL was the chief investigator for the study.

Corresponding author

Correspondence to Guoan Li.

Ethics declarations

Competing interest

All authors declare that they have no conflict of interest.

Additional information

Associate Editor Andreas Anayiotos oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Xia, Y., Zhou, C. et al. Investigation of Characteristic Motion Patterns of the Knee Joint During a Weightbearing Flexion. Ann Biomed Eng 51, 2237–2244 (2023). https://doi.org/10.1007/s10439-023-03259-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03259-1

Keywords

Navigation