Skip to main content

Advertisement

Log in

New animal models of wear-particle osteolysis

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Particle debris resulting from in vivo degradation of total joint replacement components are recognised as the major factor limiting the longevity of joint reconstruction and the overall success of the procedure. Better understanding the complex cellular and tissue mechanisms and interactions resulting in wear-particle osteolysis requires a number of experimental approaches, including radiological monitoring and analysis of retrieved tissues from clinical cases, in vitro experiments, and also animal-model investigations. In consideration of both their advantages and drawbacks, this paper provides an historical overview of numerous animal models that have been developed over the last three decades to investigate the pathogenesis of wear-particle osteolysis and to facilitate the preclinical testing of new treatment options. The authors also focus on recent studies in order to provide a better understanding of the current state of the art on this subject and propose some perspectives regarding technical and fundamental questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ethgen O, Bruyère O, Richy F, Dardennes C, Reginster JY (2004) Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am 86:963–974

    PubMed  Google Scholar 

  2. Nizegorodcew T, Gasparini G, Maccauro G, Todesca A, De Santis E (1997) Massive osteolysis induced by high molecular weight polyethylene wear debris. Int Orthop 21:14–18

    Article  CAS  PubMed  Google Scholar 

  3. Dumbleton J, Manley M, Edidin A (2002) A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty 17:649–661

    Article  PubMed  Google Scholar 

  4. Schmalzried T, Jasty M, Harris W (1992) Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg Am 74:849–863

    CAS  PubMed  Google Scholar 

  5. Hirakawa K, Bauer T, Stulberg B, Wilde A (1996) Comparison and quantitation of wear debris of failed total hip and total knee arthroplasty. J Biomed Mater Res 31:257–263

    Article  CAS  PubMed  Google Scholar 

  6. Margevicius K, Bauer T, McMahon J, Brown S, Merritt K (1994) Isolation and characterization of debris in membranes around total joint prostheses. J Bone Joint Surg Am 76:1664–1675

    CAS  PubMed  Google Scholar 

  7. Merkel K, Erdmann J, McHugh K, Abu-Amer Y, Ross P, Teitelbaum S (1999) Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol 154:203–210

    Article  CAS  PubMed  Google Scholar 

  8. Ingham E, Green T, Stone M, Kowalski R, Watkins N, Fisher J (2000) Production of TNF-alpha and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials 21:1005–1013

    Article  CAS  PubMed  Google Scholar 

  9. Maloney W, James R, Smith R (1996) Human macrophage response to retrieved titanium alloy particles in vitro. Clin Orthop Relat Res 322:268–278

    Article  PubMed  Google Scholar 

  10. Sundfeldt M, Carlsson L, Johansson C, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77:177–197

    Article  PubMed  Google Scholar 

  11. Pap G, Machner A, Rinnert T, Hörler D, Gay RE, Schwarzberg H, Neumann W, Michel B, Gay S, Pap T (2001) Development and characteristics of a synovial-like interface membrane around cemented tibial hemiarthroplasties in a novel rat model of aseptic prosthesis loosening. Arthritis Rheum 44:956–963

    Article  CAS  PubMed  Google Scholar 

  12. Goodman S, Fornasier V, Lee J, Kei J (1988) The effects of bulk versus particulate polymethylmethacrylate on bone. Clin Orthop Relat Res 232:255–262

    CAS  PubMed  Google Scholar 

  13. Goodman S (1994) The effects of micromotion and particulate materials on tissue differentiation: bone chamber studies in rabbits. Acta Orthop Scand Suppl 258:1–43

    CAS  PubMed  Google Scholar 

  14. Goodman S, Trindade M, Ma T, Lee M, Wang N, Ikenou T, Matsuura I, Miyanishi K, Fox N, Regula D, Genovese M, Klein J, Bloch D, Lane-Smith R (2003) Modulation of bone ingrowth by local infusion of IL-10 in the presence of UHMWPE wear particles. J Biomed Mater Res A 65:43–50

    Article  PubMed  Google Scholar 

  15. Goodman S, Song Y, Yoo J, Fox N, Trinidade M, Kajiyama G, Ma T, Regula D, Brown J, Lane-Smith R (2003) Local infusion of FGF-2 enhances bone ingrowth in rabbit chambers in the presence of polyethylene particles. J Biomed Mater Res A 65:454–461

    Article  PubMed  Google Scholar 

  16. Goodman S, Ma T, Spanogle J, Chiu R, Miyanishi K, Oh K, Plouhar P, Wadsworth S, Lane-Smith R (2007) Effects of a p38 MAP kinase inhibitor on bone ingrowth and tissue differentiation in rabbit chambers. J Biomed Mater Res A 81:310–316

    CAS  PubMed  Google Scholar 

  17. Ma T, Nelson E, Mawatari T, Oh K, Larsen D, Lane-Smith R, Goodman S (2006) Effects of local infusion of OP-1 on particle-induced and NSAID induced inhibition of bone ingrowth in vivo. J Biomed Mater Res A 79:740–746

    CAS  PubMed  Google Scholar 

  18. Trindade M, Song Y, Aspenberg P, Smith R, Goodman S (1999) Proinflammatory mediator release in response to particle challenge: studies using the bone harvest chamber. J Biomed Mater Res 48:434–439

    Article  CAS  PubMed  Google Scholar 

  19. Kubo T, Sawada K, Hirakawa K, Shimizu C, Takamatsu T, Hirasawa Y (1999) Histiocyte reaction in rabbit femurs to UHMWPE, metal, and ceramic particles in different sizes. J Biomed Mater Res 45:363–369

    Article  CAS  PubMed  Google Scholar 

  20. Goodman S, Chin R, Magee F (1992) Prostaglandin E2 production by the membrane surrounding loose and fixated cemented tibial hemiarthroplasties in the rabbit knee. Clin Orthop Relat Res 284:283–287

    PubMed  Google Scholar 

  21. Sacomen D, Smith RL, Song Y, Fornasier V, Goodman S (1998) Effects of polyethylene particles on tissue surrounding knee arthroplasties in rabbits. J Biomed Mater Res 43:123–130

    Article  CAS  PubMed  Google Scholar 

  22. Sundfeldt M, Widmark M, Johansson CB, Campbell P, Carlsson L (2002) Effect of submicron polyethylene particles on an osseointegrated implant: an experimental study with a rabbit patellofemoral prosthesis. Acta Orthop Scand 73:416–424

    Article  PubMed  Google Scholar 

  23. Spector M, Shortkroff S, Hsu H, Lane N, Sledge C, Thornhill T (1990) Tissue changes around loose prostheses. A canine model to investigate the effects of an antiinflammatory agent. Clin Orthop Relat Res 261:140–152

    PubMed  Google Scholar 

  24. Turner T, Urban R, Sumner D, Galante J (1993) Revision, without cement, of aseptically loose, cemented total hip prostheses. Quantitative comparison of the effects of four types of medullary treatment on bone ingrowth in a canine model. J Bone Joint Surg Am 75-A:845–862

    Google Scholar 

  25. Dowd J, Schwendeman L, Macaulay W, Doyle J, Shanbhag A, Wilson S, Herndon J, Rubash H (1995) Aseptic loosening in uncemented total hip arthroplasty in a canine model. Clin Orthop Relat Res 319:106–121

    PubMed  Google Scholar 

  26. Shanbhag A, Hasselman C, Rubash H (1997) Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop Relat Res 344:33–43

    Article  PubMed  Google Scholar 

  27. Rahbek O, Kold S, Bendix K, Overgaard S, Soballe K (2005) Superior sealing effect of hydroxyapatite in porous-coated implants: experimental studies on the migration of polyethylene particles around stable and unstable implants in dogs. Acta Orthop 76:375–385

    PubMed  Google Scholar 

  28. Coathup M, Blackburn J, Goodship A, Cunningham J, Smith T, Blunn G (2005) Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components. Biomaterials 26:4161–4169

    Article  CAS  PubMed  Google Scholar 

  29. El-Warrak A, Olmstead M, Apelt D, Deiss F, Noetzli H, Zlinsky K, Hilbe M, Bertschar-Wolfsberger R, Johnson A, Auer J, von Rechenberg B (2004) An animal model for interface tissue formation in cemented hip replacements. Vet Surg 33(5):495–504

    Article  PubMed  Google Scholar 

  30. Howie DW, Vernon-Roberts B, Oakeshott R, Manthey B (1988) A rat model of resorption of bone at the cement-bone interface in the presence of polyethylene wear particles. J Bone Joint Surg Am 70-A:257–263

    Google Scholar 

  31. Gelb H, Schumacher H, Cuckler J, Ducheyne P, Baker D (1994) In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area. J Orthop Res 12:83–92

    Article  CAS  PubMed  Google Scholar 

  32. Allen M, Brett F, Millett P, Rushton N (1996) The effects of particulate polyethylene at a weight-bearing bone-implant interface: a study in rats. J Bone Joint Surg Br 78:32–37

    CAS  PubMed  Google Scholar 

  33. Millett P, Allen M, Bostrom M (2002) Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am 84:236–249

    PubMed  Google Scholar 

  34. Wooley P, Morren R, Andary J, Sud S, Yang S, Mayton L, Markel D, Sieving A, Nasser S (2002) Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 23:517–526

    Article  CAS  PubMed  Google Scholar 

  35. Yang S, Wu B, Mayton L, Evans C, Robbins P, Wooley P (2002) IL-1Ra and vIL-10 gene transfer using retroviral vectors ameliorates particle-associated inflammation in the murine air pouch model. Inflamm Res 51:342–350

    Article  CAS  PubMed  Google Scholar 

  36. Yang S, Wu B, Mayton L, Mukherjee P, Robbins P, Evans C, Wooley P (2004) Protective effects of IL- 1Ra or vIL-10 gene transfer on a murine model of wear debris- induced osteolysis. Gene Ther 11:483–491

    Article  CAS  PubMed  Google Scholar 

  37. Yang S, Mayton L, Wu B, Goater J, Schwarz E, Wooley P (2002) Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model. Arthritis Rheum 46:2514–2523

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz E, Benz E, Lu A, Goater J, Mollano A, Rosier R, Puzas J, O’Keefe R (2000) Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis. J Orthop Res 18:849–855

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz E, Lu A, Goater J, Benz E, Kollias G, Rosier R, Puzas J, O’Keefe R (2000) Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis. J Orthop Res 18:472–480

    Article  CAS  PubMed  Google Scholar 

  40. Childs L, Goater J, O’Keefe R, Schwarz E (2001) Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res 16:338–347

    Article  CAS  PubMed  Google Scholar 

  41. Carmody E, Schwarz E, Puzas J, Rosier R, O’Keefe R (2002) Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis Rheum 46:1298–1308

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Morham S, Langenbach R, Young D, Xing L, Boyce B, Puzas E, Rosier R, O’Keefe R, Schwaz E (2001) Evidence for a direct role of cyclo-oxygenase 2 in implant wear debris-induced osteolysis. J Bone Miner Res 16:660–670

    Article  CAS  PubMed  Google Scholar 

  43. Ulrich-Vinther M, Carmody E, Goater J, Soballe K, O’Keefe R, Schwarz E (2002) Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am 84-A(8):1405–1412

    PubMed  Google Scholar 

  44. Warme B, Epstein N, Trindade M, Miyanishi K, Ma T, Saket R, Regula D, Goodman S, Lane-Smith R (2004) Proinflammatory mediator expression in a novel murine model of titanium-particle-induced intramedullary inflammation. J Biomed Mater Res B Appl Biomater 71:360–366

    Article  PubMed  Google Scholar 

  45. Kadoya Y, Revell P, Al-Saffer N, Kobayashi A, Scott G, Freeman M (1996) Bone formation and bone resorption in failed total joint arthroplasties: histomorphometric analysis with histochemical and immunohistochemical technique. J Orthop Res 14:473–482

    Article  CAS  PubMed  Google Scholar 

  46. Ren P, Huang Z, Ma T, Biswal S, Smith R, Goodman S (2010) Surveillance of systemic trafficking of macrophages induced by UHMWPE particles in nude mice by noninvasive imaging. J Biomed Mater Res A 94(3):706–711

    PubMed  Google Scholar 

  47. Ma T, Ortiz S, Huang Z, Ren P, Smith R, Goodman S (2009) In vivo murine model of continuous intramedullary infusion of particles-a preliminary study. J Biomed Mater Res B Appl Biomater 88(1):250–253

    PubMed  Google Scholar 

  48. Yang S, Yu H, Gong W, Wu B, Mayton L, Costello R, Wooley P (2007) Murine model of prosthesis failure for the long-term study of aseptic loosening. J Orthop Res 25(5):603–611

    Article  PubMed  Google Scholar 

  49. Zhang T, Yu H, Gong W, Zhang L, Jia T, Wooley P, Yang SY (2009) The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials 30(30):6102–6108

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

Authors declare no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Langlois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langlois, J., Hamadouche, M. New animal models of wear-particle osteolysis. International Orthopaedics (SICOT) 35, 245–251 (2011). https://doi.org/10.1007/s00264-010-1143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-010-1143-0

Keywords

Navigation