Skip to main content

Advertisement

Log in

Assessment of immune status of laryngeal squamous cell carcinoma can predict prognosis and guide treatment

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

In the past few years, immunotherapy has changed the way we treat solid tumors. People pay more and more attention to the immune microenvironment of laryngeal squamous cell carcinoma (LSCC). In this study, our immunotherapy research took advantage of the clinical database and focused our in-depth analysis on the tumor microenvironment (TME).

Methods

This study evaluated the relationship between the clinical outcome and the local tissue and overall immune status in 412 patients with primary LSCC. We constructed and validated a risk model that could predict prognosis, assess immune status, identify high-risk patients, and develop personalized treatment plans through bioinformatics. In addition, through immunohistochemical analysis, we verified the differential expression of CTSL and KDM5D genes with the largest weight coefficients in the model in LSCC tissues and their influence on the prognosis and tumor-infiltrating lymphocytes (TILs).

Results

We found that interstitial tumor-infiltrating lymphocytes, tumor parenchymal-infiltrating lymphocyte volume, tumor infiltrates lymphocytes of frontier invasion, and the platelet-to-lymphocyte ratio (PLR) were independent factors affecting the prognosis of patients with LSCC. A novel risk model can guide clinicians to accurately predict prognosis, identify high-risk patients, and formulate personalized treatment plans. The differential expression of genes such as CTSL and KDM5D has a significant correlation with the TILs of LSCC and the prognosis of patients.

Conclusion

Local and systemic inflammatory markers in patients with laryngeal squamous cell carcinoma are reliable prognostic factors. The risk model and CTSL, KDM5D gene have important potential research value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors upon reasonable request.

Abbreviations

AJCC:

American Joint Committee on Cancer

BP:

Biological processes

CC:

Cellular component

CCLE:

Cancer Cell Line Encyclopedia

CIBERSORT:

Cell type Identification by Estimating Relative Subsets of RNA Transcripts

CTSL:

Cathepsin L

DCA:

Decision curve analysis

ESTIMATE:

Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data

FDR:

False discovery rate

GO:

Gene ontology

H&E staining:

Hematoxylin–eosin staining

HRs:

Hazard ratios

ICIs:

Immune checkpoint inhibitors

ICGC:

International Cancer Genome Consortium

iTILs:

Interstitial tumor-infiltrating lymphocytes

KDM5D:

Lysine (K)-specific demethylase 5D

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LSCC:

Laryngeal squamous cell carcinoma

MCP-counter:

Microenvironment cell population count

ME:

Module eigengene

MF:

Molecular function

OS:

Overall survival

PLR:

Platelet-to-lymphocyte ratio

ROC:

Receiver operating character curve

RFS:

Recurrence-free survival

TME:

Tumor microenvironment

TILs:

Tumor-infiltrating lymphocytes

TILv:

Tumor parenchymal-infiltrating lymphocyte volume

TILf:

Tumor infiltrates lymphocytes of frontier invasion

TCGA:

The Cancer Genome Atlas

TMB:

Tumor mutation burden

WGCNA:

Weighted gene co-expression network analysis

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132

    Article  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  3. Steuer CE, El-Deiry M, Parks JR, Higgins KA, Saba NF (2017) An update on larynx cancer. CA Cancer J Clin 67(1):31–50

    Article  PubMed  Google Scholar 

  4. Wei FQ, Sun W, Wong TS, Gao W, Wen YH, Wei JW et al (2016) Eliciting cytotoxic T lymphocytes against human laryngeal cancer-derived antigens: evaluation of dendritic cells pulsed with a heat-treated tumor lysate and other antigen-loading strategies for dendritic-cell-based vaccination. J Exp Clin Cancer Res 35:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Li ZY, Zhou GQ, Sun Y (2021) An Immune-Related Gene Prognostic Index for Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 27(1):330–341

    Article  CAS  PubMed  Google Scholar 

  6. Kaderbhai C, Tharin Z, Ghiringhelli F. The Role of Molecular Profiling to Predict the Response to Immune Checkpoint Inhibitors in Lung Cancer. Cancers (Basel). 2019;11(2)

  7. Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19(3):133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galluzzi L, Chan TA, Kroemer G, Wolchok JD, Lopez-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10(459)

  9. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP et al (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38(1):1–10

    Article  CAS  PubMed  Google Scholar 

  10. Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA et al (2020) Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res 8(4):436–450

    Article  CAS  PubMed  Google Scholar 

  11. Mele L, Del Vecchio V, Marampon F, Regad T, Wagner S, Mosca L et al (2020) beta2-AR blockade potentiates MEK1/2 inhibitor effect on HNSCC by regulating the Nrf2-mediated defense mechanism. Cell Death Dis 11(10):850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J et al (2016) Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet 387(10030):1837–1846

    Article  CAS  PubMed  Google Scholar 

  13. Egen JG, Ouyang W, Wu LC (2020) Human anti-tumor immunity: insights from immunotherapy clinical trials. Immunity 52(1):36–54

    Article  CAS  PubMed  Google Scholar 

  14. Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411)

  15. Fumet JD, Richard C, Ledys F, Klopfenstein Q, Joubert P, Routy B et al (2018) Prognostic and predictive role of CD8 and PD-L1 determination in lung tumor tissue of patients under anti-PD-1 therapy. Br J Cancer 119(8):950–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B et al (2017) Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immuno-oncology biomarkers working group: part 2: TILs in melanoma, gastrointestinal tract carcinomas, non-small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol 24(6):311–335

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kojima YA, Wang X, Sun H, Compton F, Covinsky M, Zhang S (2018) Reproducible evaluation of tumor-infiltrating lymphocytes (TILs) using the recommendations of International TILs working group 2014. Ann Diagn Pathol 35:77–79

    Article  PubMed  Google Scholar 

  18. Alessandrini L, Franz L, Ottaviano G, Ghi MG, Lanza C, Blandamura S et al (2020) Prognostic role of programmed death ligand 1 (PD-L1) and the immune microenvironment in laryngeal carcinoma. Oral Oncol 108:104836

    Article  CAS  PubMed  Google Scholar 

  19. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117):286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X et al (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17(1):129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu J, Zhu J, Du F, Zhang L, Li D, Huang H, et al. Prognostic Inflammatory Index Based on Preoperative Peripheral Blood for Predicting the Prognosis of Colorectal Cancer Patients. Cancers (Basel). 2020;13(1)

  22. Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol 26(2):259–271

    Article  CAS  PubMed  Google Scholar 

  23. Kozela E, Juknat A, Gao F, Kaushansky N, Coppola G, Vogel Z (2016) Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells. J Neuroinflammation 13(1):136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ni Y, Zhang Z, Chen G, Long W, Tong L, Zeng J (2019) Integrated analyses identify potential prognostic markers for uveal melanoma. Exp Eye Res. 187:107780

    Article  CAS  PubMed  Google Scholar 

  25. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56(2):337–344

    Article  CAS  PubMed  Google Scholar 

  28. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17(1):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sturm G, Finotello F, Petitprez F, Zhang JD, Baumbach J, Fridman WH et al (2019) Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35(14):i436–i445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160(1–2):48–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turner N, Wong HL, Templeton A, Tripathy S, Whiti Rogers T, Croxford M et al (2016) Analysis of local chronic inflammatory cell infiltrate combined with systemic inflammation improves prognostication in stage II colon cancer independent of standard clinicopathologic criteria. Int J Cancer 138(3):671–678

    Article  CAS  PubMed  Google Scholar 

  32. Kang BW, Seo AN, Yoon S, Bae HI, Jeon SW, Kwon OK et al (2016) Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann Oncol 27(3):494–501

    Article  CAS  PubMed  Google Scholar 

  33. Bai S, Zhang P, Zhang JC, Shen J, Xiang X, Yan YB et al (2019) A gene signature associated with prognosis and immune processes in head and neck squamous cell carcinoma. Head Neck 41(8):2581–2590

    Article  PubMed  Google Scholar 

  34. Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991

    Article  CAS  PubMed  Google Scholar 

  35. Bradford CR, Kumar B, Bellile E, Lee J, Taylor J, D’Silva N et al (2014) Biomarkers in advanced larynx cancer. Laryngoscope 124(1):179–187

    Article  CAS  PubMed  Google Scholar 

  36. Distel LV, Fickenscher R, Dietel K, Hung A, Iro H, Zenk J et al (2009) Tumour infiltrating lymphocytes in squamous cell carcinoma of the oro- and hypopharynx: prognostic impact may depend on type of treatment and stage of disease. Oral Oncol 45(10):e167–e174

    Article  CAS  PubMed  Google Scholar 

  37. Pretscher D, Distel LV, Grabenbauer GG, Wittlinger M, Buettner M, Niedobitek G (2009) Distribution of immune cells in head and neck cancer: CD8+ T-cells and CD20+ B-cells in metastatic lymph nodes are associated with favourable outcome in patients with oro- and hypopharyngeal carcinoma. BMC Cancer 9:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ward MJ, Thirdborough SM, Mellows T, Riley C, Harris S, Suchak K et al (2014) Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br J Cancer 110(2):489–500

    Article  CAS  PubMed  Google Scholar 

  39. Kim HR, Ha SJ, Hong MH, Heo SJ, Koh YW, Choi EC et al (2016) PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep 6:36956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Wang S, Song X, Zeng W, Wang S, Chen F et al (2016) The prognostic value of systemic and local inflammation in patients with laryngeal squamous cell carcinoma. Onco Targets Ther 9:7177–7185

    Article  PubMed  PubMed Central  Google Scholar 

  41. Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M et al (2019) Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol 37(7):559–569

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chrisafis G, Wang T, Moissoglu K, Gasparski AN, Ng Y, Weigert R et al (2020) Collective cancer cell invasion requires RNA accumulation at the invasive front. Proc Natl Acad Sci U S A 117(44):27423–27434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Y, He J, Shi DB, Zhang H, Chen X, Xing AY et al (2021) Elevated ZBTB7A expression in the tumor invasive front correlates with more tumor budding formation in gastric adenocarcinoma. J Cancer Res Clin Oncol 147(1):105–115

    Article  CAS  PubMed  Google Scholar 

  44. Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W et al (2020) Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res 39(1):156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trinchieri G (2012) Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 30:677–706

    Article  CAS  PubMed  Google Scholar 

  46. Kondo M (2016) One niche to rule both maintenance and loss of stemness in HSCs. Immunity 45(6):1177–1179

    Article  PubMed  Google Scholar 

  47. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  48. Diakos CI, Charles KA, McMillan DC, Clarke SJ (2014) Cancer-related inflammation and treatment effectiveness. Lancet Oncol 15(11):e493-503

    Article  PubMed  Google Scholar 

  49. Gijsbers K, Gouwy M, Struyf S, Wuyts A, Proost P, Opdenakker G et al (2005) GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp Cell Res 303(2):331–342

    Article  CAS  PubMed  Google Scholar 

  50. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531

    Article  CAS  PubMed  Google Scholar 

  51. Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y, Sakai Y. The Role of Tumor-Associated Neutrophils in Colorectal Cancer. Int J Mol Sci. 2019;20(3)

  52. Augier S, Ciucci T, Luci C, Carle GF, Blin-Wakkach C, Wakkach A (2010) Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance. J Immunol 185(12):7165–7173

    Article  CAS  PubMed  Google Scholar 

  53. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  CAS  PubMed  Google Scholar 

  54. Gaertner F, Massberg S (2019) Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 19(12):747–760

    Article  CAS  PubMed  Google Scholar 

  55. Michael JV, Wurtzel JGT, Mao GF, Rao AK, Kolpakov MA, Sabri A et al (2017) Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 130(5):567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wuerdemann N, Putz K, Eckel H, Jain R, Wittekindt C, Huebbers CU, et al. LAG-3, TIM-3 and VISTA Expression on Tumor-Infiltrating Lymphocytes in Oropharyngeal Squamous Cell Carcinoma-Potential Biomarkers for Targeted Therapy Concepts. Int J Mol Sci. 2020;22(1)

  57. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC et al (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795

    Article  CAS  PubMed  Google Scholar 

  58. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14(12):717–734

    Article  CAS  PubMed  Google Scholar 

  59. Deng L, Huang S, Chen B, Tang Y, Huang F, Li D et al (2020) Tumor-linked macrophages promote HCC development by mediating the CCAT1/Let-7b/HMGA2 signaling pathway. Onco Targets Ther 13:12829–12843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang D, Jiao Z, Ji Y, Zhang S (2020) Elevated TUBA1A might indicate the clinical outcomes of patients with gastric cancer, being associated with the infiltration of macrophages in the tumor immune microenvironment. J Gastrointestin Liver Dis 29(4):509–522

    Article  PubMed  Google Scholar 

  61. Liu R, Liao YZ, Zhang W, Zhou HH (2020) Relevance of immune infiltration and clinical outcomes in pancreatic ductal adenocarcinoma subtypes. Front Oncol. 10:575264

    Article  PubMed  Google Scholar 

  62. Jairath NK, Farha MW, Jairath R, Harms PW, Tsoi LC, Tejasvi T. Prognostic value of intratumoral lymphocyte-to-monocyte ratio and M0 macrophage enrichment in tumor immune microenvironment of melanoma. Melanoma Manag. 2020;7(4):MMT51

  63. Peres Lde P, da Luz FA, Pultz Bdos A, Brigido PC, de Araujo RA, Goulart LR et al (2015) Peptide vaccines in breast cancer: the immunological basis for clinical response. Biotechnol Adv 33(8):1868–1877

    Article  CAS  PubMed  Google Scholar 

  64. Wang W, Xiong Y, Ding X, Wang L, Zhao Y, Fei Y et al (2019) Cathepsin L activated by mutant p53 and Egr-1 promotes ionizing radiation-induced EMT in human NSCLC. J Exp Clin Cancer Res 38(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  65. Suzuki H, Sinclair L, Soderstrom PA, Lorusso G, Davies P, Ferreira LS et al (2017) A nuclear sandbank beyond the proton drip line. Phys Rev Lett. 119(19):192503

    Article  CAS  PubMed  Google Scholar 

  66. Han ML, Zhao YF, Tan CH, Xiong YJ, Wang WJ, Wu F et al (2016) Cathepsin L upregulation-induced EMT phenotype is associated with the acquisition of cisplatin or paclitaxel resistance in A549 cells. Acta Pharmacol Sin 37(12):1606–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cai LS, Chen QX, Fang SY, Lian MQ, Lian MJ, Cai MZ (2020) ETV4 promotes the progression of gastric cancer through regulating KDM5D. Eur Rev Med Pharmacol Sci 24(5):2442–2451

    PubMed  Google Scholar 

  68. Shen X, Hu K, Cheng G, Xu L, Chen Z, Du P et al (2019) KDM5D inhibit epithelial-mesenchymal transition of gastric cancer through demethylation in the promoter of Cul4A in male. J Cell Biochem 120(8):12247–12258

    Article  CAS  PubMed  Google Scholar 

  69. Komura K, Yoshikawa Y, Shimamura T, Chakraborty G, Gerke TA, Hinohara K et al (2018) ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. J Clin Invest 128(7):2979–2995

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We would like to show sincere appreciation to the editors and reviewers for critical comments on this article.

Funding

This work was supported by Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (LBH-Q18088).

Author information

Authors and Affiliations

Authors

Contributions

XW, KC, and EG conceptualized the project and all data analysis and wrote the first draft of the manuscript. XM, CA, LG, CZ, JG, XY, JS, and WY contributed to the collection of specimens, the processing, analysis, and interpretation of data. XL and SM contributed to guide the data analysis, and manuscript writing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaomei Li or Susheng Miao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

We had obtained ethical approval from the ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cao, K., Guo, E. et al. Assessment of immune status of laryngeal squamous cell carcinoma can predict prognosis and guide treatment. Cancer Immunol Immunother 71, 1199–1220 (2022). https://doi.org/10.1007/s00262-021-03071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03071-7

Keywords

Navigation