Skip to main content
Log in

TIGIT promotes CD8+T cells exhaustion and predicts poor prognosis of colorectal cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

TIGIT is a lymphocyte surface receptor, which is mainly expressed on the surface of CD8+T cells. The role of TIGIT in colorectal cancer and its expression pattern in colorectal cancer infiltrating lymphocytes are still controversial. This study aimed at identifying the function of TIGIT in colorectal cancer. Patients with colorectal cancer showed significantly higher TIGIT+CD8+T cell infiltration in tumor tissues, metastases compared with paired PBMC and normal tissues through flow cytometry. TIGIT+CD8+T cells showed an exhausted phenotype and expressed low levels of killer cytokines IFN-γ, IL-2, TNF-α. In addition, more inhibitory receptors such as PD-1, LAG-3, and TIM-3 were expressed on the surface of TIGIT+CD8+T cells. TGF-β1 could promote the expression of TIGIT and inhibit CD8+T cell function in vitro. Moreover, the accumulation of TIGIT+T cells in tumors was associated with advanced disease, predicted early recurrence, and reduced survival rates in colorectal cancer patients. Our results indicate that TIGIT can be a biological marker for the prognosis of colorectal cancer, and TIGIT can be used as a potential target for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used in this study are available from the corresponding author on reasonable request.

Abbreviations

CRC:

Colorectal cancer

IFN-γ:

Interferon γ

IL-2:

Interleukin-2

LAG-3:

Lymphocyte-activation gene 3

NK cells:

Natural killer cells

PBMC:

Peripheral blood mononuclear cell

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed cell death ligand 1

TGF-β:

Transforming growth factor-β

TIGIT:

T cell immunoreceptor with Ig and ITIM domains

TILs:

Tumor-infiltrating lymphocytes

TIM-3:

T cell immunoglobulin and mucin domain-3

TNF-α:

Tumor necrosis factor-α

Tregs:

Regulatory T cells

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Yang Y (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 125(9):3335–3337. https://doi.org/10.1172/jci83871

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330. https://doi.org/10.1038/nature21349

    Article  CAS  PubMed  Google Scholar 

  4. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH (2016) Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol 34:539–573. https://doi.org/10.1146/annurev-immunol-032414-112049

    Article  CAS  PubMed  Google Scholar 

  5. Gentzler R, Hall R, Kunk PR, Gaughan E, Dillon P, Slingluff CL Jr, Rahma OE (2016) Beyond melanoma: inhibiting the PD-1/PD-l1 pathway in solid tumors. Immunotherapy 8(5):583–600. https://doi.org/10.2217/imt-2015-0029

    Article  CAS  PubMed  Google Scholar 

  6. Kluger HM, Chiang V, Mahajan A, Zito CR, Sznol M, Tran T, Weiss SA, Cohen JV, Yu J, Hegde U, Perrotti E, Anderson G, Ralabate A, Kluger Y, Wei W, Goldberg SB, Jilaveanu LB (2019) Long-term survival of patients with melanoma with active brain metastases treated with pembrolizumab on a phase II trial. J Clin Oncol 37(1):52–60. https://doi.org/10.1200/jco.18.00204

    Article  CAS  PubMed  Google Scholar 

  7. Dt Le, Jn Uram, Wang H, Bartlett Br et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. New Engl J Med 372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596

    Article  CAS  Google Scholar 

  8. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, Mcdermott R, Hill A, Sawyer MB, Hendlisz A, Neyns B, Svrcek M, Moss RA, Ledeine JM, Cao ZA, Kamble S, Kopetz S, André T (2018) Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 36(8):773–779. https://doi.org/10.1200/jco.2017.76.9901

    Article  CAS  PubMed  Google Scholar 

  9. Harjunpää H, Guillerey C (2020) TIGIT as an emerging immune checkpoint. Clin Exp Immunol 200(2):108–119. https://doi.org/10.1111/cei.13407

    Article  PubMed  Google Scholar 

  10. Kumar BV, Connors TJ, Farber DL (2018) Human T Cell development, localization, and function throughout Life. Immunity 48(2):202–213. https://doi.org/10.1016/j.immuni.2018.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Solinas C, Pusole G, Demurtas L, Puzzoni M, Mascia R, Morgan G, Giampieri R, Scartozzi M (2017) Tumor infiltrating lymphocytes in gastrointestinal tumors: controversies and future clinical implications. Crit Rev Oncol Hematol 110:106–116. https://doi.org/10.1016/j.critrevonc.2016.11.016

    Article  PubMed  Google Scholar 

  12. Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 4:59. https://doi.org/10.1186/s40425-016-0165-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bremnes RM, Busund LT, Kilvær TL, Andersen S, Richardsen E, Paulsen EE, Hald S, Khanehkenari MR, Cooper WA, Kao SC, Dønnem T (2016) The role of tumor-infiltrating lymphocytes in development, progression, and prognosis of non-small cell lung cancer. J Thorac Oncol 11(6):789–800. https://doi.org/10.1016/j.jtho.2016.01.015

    Article  PubMed  Google Scholar 

  14. Effros RB (2004) Replicative senescence of CD8 T cells: potential effects on cancer immune surveillance and immunotherapy. Cancer Immunol Immunother 53(10):925–933. https://doi.org/10.1007/s00262-004-0508-x

    Article  PubMed  Google Scholar 

  15. Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234(6):8509–8521. https://doi.org/10.1002/jcp.27782

    Article  CAS  PubMed  Google Scholar 

  16. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022. https://doi.org/10.1038/ni.2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. https://doi.org/10.1038/ni.1674

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, Sun R, Tian Z (2018) Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. https://doi.org/10.1038/s41590-018-0132-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, Kuchroo VK (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569–581. https://doi.org/10.1016/j.immuni.2014.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188(8):3869–3875. https://doi.org/10.4049/jimmunol.1103627

    Article  CAS  PubMed  Google Scholar 

  21. Schorer M, Rakebrandt N, Lambert K, Hunziker A, Pallmer K, Oxenius A, Kipar A, Stertz S, Joller N (2020) TIGIT limits immune pathology during viral infections. Nat Commun 11(1):1288. https://doi.org/10.1038/s41467-020-15025-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao L, Hou H, Wu S, Zhou Y, Wang J, Yu J, Wu X, Lu Y, Mao L, Bosco MJ, Wang F, Sun Z (2017) TIGIT signalling pathway negatively regulates CD4(+) T-cell responses in systemic lupus erythematosus. Immunology 151(3):280–290. https://doi.org/10.1111/imm.12715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blessin NC, Simon R, Kluth M, Fischer K, Hube-Magg C, Li W, Makrypidi-Fraune G, Wellge B, Mandelkow T, Debatin NF, Höflmayer D, Lennartz M, Sauter G, Izbicki JR, Minner S, Büscheck F, Uhlig R, Dum D, Krech T, Luebke AM, Wittmer C, Jacobsen F, Burandt EC, Steurer S, Wilczak W, Hinsch A (2019) Patterns of TIGIT expression in lymphatic tissue, inflammation, and cancer. Dis Markers 2019:5160565. https://doi.org/10.1155/2019/5160565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kizhakeyil, Atish, Ong, Seow Theng et al (2019) Isolation of Human Peripheral Blood In: T-Cell Motility. Methods in Molecular Biology. pp 11-17. doi:https://doi.org/10.1007/978-1-4939-9036-8_2

  25. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park BV, Freeman ZT, Ghasemzadeh A, Chattergoon MA, Rutebemberwa A, Steigner J, Winter ME, Huynh TV, Sebald SM, Lee SJ, Pan F, Pardoll DM, Cox AL (2016) TGFbeta1-Mediated SMAD3 enhances PD-1 expression on antigen-specific T Cells in cancer. Cancer Discov 6(12):1366–1381. https://doi.org/10.1158/2159-8290.cd-15-1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kucan Brlic P, Lenac Rovis T, Cinamon G, Tsukerman P, Mandelboim O, Jonjic S (2019) Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 16(1):40–52. https://doi.org/10.1038/s41423-018-0168-y

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Li M, Wang X, Dang Z, Jiang Y, Wang X, Kong Y, Yang Z (2019) PD-1(+) TIGIT(+) CD8(+) T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol Immunother 68(12):2041–2054. https://doi.org/10.1007/s00262-019-02426-5

    Article  CAS  PubMed  Google Scholar 

  29. Wu L, Mao L, Liu JF, Chen L, Yu GT, Yang LL, Wu H, Bu LL, Kulkarni AB, Zhang WF, Sun ZJ (2019) Blockade of TIGIT/CD155 signaling reverses t-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinoma. Cancer Immunol Res. https://doi.org/10.1158/2326-6066.Cir-18-0725

    Article  PubMed  Google Scholar 

  30. Sun Y, Luo J, Chen Y, Cui J, Lei Y, Cui Y, Jiang N, Jiang W, Chen L, Chen Y, Kuang Y, Tang K, Ke Z (2020) Combined evaluation of the expression status of CD155 and TIGIT plays an important role in the prognosis of LUAD (lung adenocarcinoma). Int Immunopharmacol 80:106198. https://doi.org/10.1016/j.intimp.2020.106198

    Article  CAS  PubMed  Google Scholar 

  31. Zhou, X., Ding, X., Li, H., Yang, C., Ma, Z., Xu, G., Yang, S., Zhang, D., Xie, X., Xin, L., and Luo, X., Upregulation of TIGIT and PD-1 in Colorectal Cancer with Mismatch-repair Deficiency. Immunol Invest, 2020: p. 1-18.DOI: https://doi.org/10.1080/08820139.2020.1758130

  32. Saleh R, Taha RZ, Toor SM, Sasidharan Nair V, Murshed K, Khawar M, Al-Dhaheri M, Petkar MA, Abu Nada M, Elkord E (2020) Expression of immune checkpoints and T cell exhaustion markers in early and advanced stages of colorectal cancer. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-020-02593-w

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kitsou M, Ayiomamitis GD, Zaravinos A (2020) High expression of immune checkpoints is associated with the TIL load, mutation rate and patient survival in colorectal cancer. Int J Oncol 57(1):237–248. https://doi.org/10.3892/ijo.2020.5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kurachi M (2019) CD8(+) T cell exhaustion. Semin Immunopathol 41(3):327–337. https://doi.org/10.1007/s00281-019-00744-5

    Article  PubMed  Google Scholar 

  35. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, Park S, Javinal V, Chiu H, Irving B, Eaton DL, Grogan JL (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26(6):923–937. https://doi.org/10.1016/j.ccell.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  36. Ej W (2011) T cell exhaustion. Nat Immunol 12(6):492–499. https://doi.org/10.1038/ni.2035

    Article  CAS  Google Scholar 

  37. Terra M, Oberkampf M, Fayolle C, Rosenbaum P, Guillerey C, Dadaglio G, Leclerc C (2018) Tumor-derived TGFβ alters the ability of plasmacytoid dendritic cells to respond to innate immune signaling. Cancer Res 78(11):3014–3026. https://doi.org/10.1158/0008-5472.Can-17-2719

    Article  CAS  PubMed  Google Scholar 

  38. Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50(4):924–940. https://doi.org/10.1016/j.immuni.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227. https://doi.org/10.1016/j.it.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported in part by grants from the Science and Technology Planning Project of Guangdong Province (2017B020227009 to Bo Wei).

Author information

Authors and Affiliations

Authors

Contributions

R.L. and B.W. contributed to conceived and designed the experiments; R.L., X.Z., and B.W. were involved in analyzed the data; R.L. and X.Z. contributed to performed the experiments and writing — original draft; B.W. was involved in writing —review and editing and funding acquisition; T.L., D.D., X.Y., and J.S contributed to assisted during the experiment; H.W. was involved in given guidance on research ideas during the research process; and Z.Z., T.C., Y.H., and J.L. contributed to provided clinical samples and information.

Corresponding authors

Correspondence to Hongbo Wei or Bo Wei.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval and consent to participate

This study was executed under ethical approvals from The Third Affiliated Hospital of Sun Yat-Sen University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 801 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, R., Zhu, X., Lan, T. et al. TIGIT promotes CD8+T cells exhaustion and predicts poor prognosis of colorectal cancer. Cancer Immunol Immunother 70, 2781–2793 (2021). https://doi.org/10.1007/s00262-021-02886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02886-8

Keywords

Navigation