Skip to main content

Advertisement

Log in

PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) is usually considered an inflammation-related cancer associated with chronic inflammation triggered by exposure to HBV and tumor antigens. T-cell exhaustion is implicated in immunosuppression of chronic infections and tumors. Although immunotherapies that enhance immune responses by targeting programmed cell death-1(PD-1)/PD-L1 are being applied to malignancies, these treatments have shown limited response rates, suggesting that additional inhibitory receptors are also involved in T-cell exhaustion and tumor outcome. Here, we analyzed peripheral blood samples and found that coexpression of PD-1 and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) was significantly upregulated on CD4+ and CD8+ T cells from patients with HBV-HCC compared with those from patients with chronic HBV or HBV-liver cirrhosis. Additionally, PD-1+ TIGIT+ CD8+ T-cell populations were elevated in patients with advanced stage and progressed HBV-HCC. Importantly, PD-1+ TIGIT+ CD8+ T-cell populations were negatively correlated with overall survival rate and progression-free survival rates. Moreover, we showed that PD-1+ TIGIT+ CD8+ T cells exhibit features of exhausted T cells, as manifested by excessive activation, high expression of other inhibitory receptors, high susceptibility to apoptosis, decreased capacity for cytokine secretion, and patterns of transcription factor expression consistent with exhaustion. In conclusion, PD-1+ TIGIT+ CD8+ T-cell populations are associated with accelerated disease progression and poor outcomes in HBV-HCC, which might not only have important clinical implications for prognosis but also provide a rationale for new targets in immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFP:

α-Fetoprotein

ALB:

Albumin

ALT:

Alanine aminotransferase

AUROC:

Area under the receiver-operating characteristic

BCLC:

Barcelona clinic liver cancer

BTLA:

B- and T-lymphocyte attenuator

CHB:

Chronic hepatitis B virus infection

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

Eomes:

Eomesodermin

FITC:

Fluorescein isothiocyanate

HBeAg:

Hepatitis B e antigen

HBV-HCC:

Hepatitis B virus-associated hepatocellular carcinoma

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HR:

Hazard ratio

IFN-γ:

Interferon gamma

LAG-3:

Lymphocyte-activation gene 3

LC:

Liver cirrhosis

MELD:

Model for end-stage liver disease

NLR:

Neutrophil–lymphocyte ratio

NK:

Natural killer cells

OS:

Overall survival

PBMC:

Peripheral blood mononuclear cell

PD-1:

Programmed cell death-1

PD-L1:

Programmed death-ligand 1

PFS:

Progression-free survival

TBIL:

Total bilirubin

TCM:

Central memory T cells

TEM:

Effector memory T cells

TEMRA:

Terminally differentiated effector T cells

TIGIT:

T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain

TILs:

Tumor-infiltrating lymphocytes

TIM-3:

T-cell immunoglobulin domain and mucin domain 3

TNF-α:

Tumor necrosis factor

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA 65(2):87–108

    PubMed  Google Scholar 

  2. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118(12):3030–3044

    Article  CAS  PubMed  Google Scholar 

  3. de Martel C, Maucort-Boulch D, Plummer M, Franceschi S (2015) World-wide relative contribution of hepatitis B and C viruses in hepatocellular carcinoma. Hepatology 62(4):1190–1200

    Article  PubMed  CAS  Google Scholar 

  4. Papatheodoridis GV, Chan HL, Hansen BE, Janssen HL, Lampertico P (2015) Risk of hepatocellular carcinoma in chronic hepatitis B: assessment and modification with current antiviral therapy. J Hepatol 62(4):956–967

    Article  PubMed  Google Scholar 

  5. Wang FS, Fan JG, Zhang Z, Gao B, Wang HY (2014) The global burden of liver disease: the major impact of China. Hepatology 60(6):2099–2108

    Article  PubMed  Google Scholar 

  6. De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474

    Article  PubMed  CAS  Google Scholar 

  7. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6

    Article  CAS  PubMed  Google Scholar 

  9. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  CAS  PubMed  Google Scholar 

  10. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36(4):265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15(8):486–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  13. Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384(9948):1109–1117

    Article  CAS  PubMed  Google Scholar 

  14. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384

    Article  CAS  PubMed  Google Scholar 

  15. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S et al (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Khoueiry AB, Sangro B, Yau T et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial[J]. The Lancet 389(10088):2492–2502

    Article  CAS  Google Scholar 

  17. Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S (2016) Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol 136(1):255–263

    Article  CAS  PubMed  Google Scholar 

  18. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C et al (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW et al (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Investig 125(11):4053–4062

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L et al (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15(5):431–438

    Article  CAS  PubMed  Google Scholar 

  21. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C et al (2015) TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Investig 125(5):2046–2058

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y et al (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26(6):923–937

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Li M, Wang X et al (2019) Effects of adjuvant traditional Chinese medicine therapy on long-term survival in patients with hepatocellular carcinoma. Phytomedicine 62:152930

    Article  PubMed  Google Scholar 

  24. Song Y, Wang B, Song R et al (2018) T-cell immunoglobulin and ITIM domain contributes to CD 8 + T-cell immunosenescence. Aging Cell 17(2):e12716

    Article  PubMed Central  CAS  Google Scholar 

  25. Motomura T, Shirabe K, Mano Y, Muto J, Toshima T, Umemoto Y et al (2013) Neutrophil-lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol 58(1):58–64

    Article  CAS  PubMed  Google Scholar 

  26. Mano Y, Shirabe K, Yamashita Y, Harimoto N, Tsujita E, Takeishi K et al (2013) Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepatectomy for hepatocellular carcinoma: a retrospective analysis. Ann Surg 258(2):301–305

    Article  PubMed  Google Scholar 

  27. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A et al (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106(6):24

    Article  CAS  Google Scholar 

  28. Cho H, Hur HW, Kim SW, Kim SH, Kim JH, Kim YT et al (2009) Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunol Immunother CII 58(1):15–23

    Article  CAS  PubMed  Google Scholar 

  29. Jankovic V, Messaoudi I, Nikolich-Zugich J (2003) Phenotypic and functional T-cell aging in rhesus macaques (Macaca mulatta): differential behavior of CD4 and CD8 subsets. Blood 102(9):3244–3251

    Article  CAS  PubMed  Google Scholar 

  30. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A et al (2009) Coregulation of CD8 + T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10(1):29–37

    Article  CAS  PubMed  Google Scholar 

  31. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439(7077):682–687

    Article  CAS  PubMed  Google Scholar 

  32. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson MA, Michaelsson J et al (2014) T-bet and Eomes are differentially linked to the exhausted phenotype of CD8 + T cells in HIV infection. PLoS Pathog 10(7):e1004251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ (2012) Network analysis reveals centrally connected genes and pathways involved in CD8 + T cell exhaustion versus memory. Immunity 37(6):1130–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY et al (2011) PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer 128(4):887–896

    Article  CAS  PubMed  Google Scholar 

  35. Zeng Z, Shi F, Zhou L, Zhang MN, Chen Y, Chang XJ et al (2011) Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma. PLoS One 6(9):e23621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y et al (2009) Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res 15(3):971–979

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Q, Huang ZL, He M, Gao Z, Kuang DM (2016) BTLA identifies dysfunctional PD-1-expressing CD4(+) T cells in human hepatocellular carcinoma. Oncoimmunology 5(12):e1254855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Stanietsky N, Rovis TL, Glasner A, Seidel E, Tsukerman P, Yamin R et al (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43(8):2138–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu S, Zhang H, Li M, Hu D, Li C, Ge B et al (2013) Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20(3):456–464

    Article  CAS  PubMed  Google Scholar 

  40. Li M, Xia P, Du Y, Liu S, Huang G, Chen J et al (2014) T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem 289(25):17647–17657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57

    Article  CAS  PubMed  Google Scholar 

  42. Liu X, He L, Han J, Wang L, Li M, Jiang Y et al (2017) Association of neutrophil-lymphocyte ratio and T lymphocytes with the pathogenesis and progression of HBV-associated primary liver cancer. PLoS One 12(2):e0170605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R (2003) Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77(8):4911–4927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S et al (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545(7652):60–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahn E, Youngblood B, Lee J, Lee J, Sarkar S, Ahmed R (2016) Demethylation of the PD-1 promoter is imprinted during the effector phase of CD8 T cell exhaustion. J Virol 90(19):8934–8946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inozume T, Yaguchi T, Furuta J, Harada K, Kawakami Y, Shimada S (2016) Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol 136(1):255–263

    Article  CAS  PubMed  Google Scholar 

  47. Chew V, Lai L, Pan L, Lim CJ, Li J, Ong R et al (2017) Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci USA 114(29):E5900–E5909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Lihua Yu and Dongdong Zhou for their assistance with the follow-up of survival information in HBV-HCC patients.

Funding

This work was supported by Application of Clinical Features of Capital City of Science and Technology Commission (No. Z171100001017082); the Fund for Beijing Science & Technology Development of TCM (No. JJ2016-14); the Fund of Special research of TCM in Capital City (17ZY02), the National Key Sci-Tech Special Project of China (No. 2018ZX10302207).

Author information

Authors and Affiliations

Authors

Contributions

ZY and YK designed the study; XL and YK performed experiments and wrote the manuscript; ML, XW, and ZD provided patient material and performed experiments; YJ and XW were responsible for the interpretation of data and revision of the manuscript.

Corresponding authors

Correspondence to Yaxian Kong or Zhiyun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval and consent standards

The study was approved by the ethics committee of Beijing Ditan Hospital, Capital Medical University (2016-1-28).

Informed consent

Each patient and healthy donors signed an informed consent. They all agreed to use their specimens and clinical information for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, M., Wang, X. et al. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunol Immunother 68, 2041–2054 (2019). https://doi.org/10.1007/s00262-019-02426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02426-5

Keywords

Navigation