Skip to main content

Advertisement

Log in

Autoimmune polyendocrine syndrome induced by immune checkpoint inhibitors: a systematic review

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objective

To summarize the clinical characteristics and immunological and genetic features of patients who developed autoimmune polyendocrine syndrome type II (APS-2) after treatment with immune checkpoint inhibitors (ICIs).

Design and methods

Several databases (MEDLINE/EMBASE/Cochrane) were searched for studies published between January 2000 and February 2020 involving patients with two or more endocrine disorders after ICI therapy.

Results

Our final review included 22 articles comprising 23 patients (median age 56 years; 65.2% male patients). Of these patients, 60.9% received anti-programmed cell death 1 (PD-1) therapy, 17.4% received anti-programmed cell death ligand 1 (PD-L1) therapy, and 4.3% received anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) monotherapy. Patients underwent a median of four treatment cycles before the onset of the primary adverse event; the median time of onset was 8.5 weeks. Endocrine organs affected by ICI administration included the thyroid gland (18/23, 78.3%), pancreatic islets (17/23, 73.9%), pituitary gland (11/23, 47.8%), and adrenal gland (2/23, 8.7%). Related autoantibodies were detected in 65.2% of patients. In patients with diabetes, glutamic acid decarboxylase antibody was closely related to the development of diabetes ketoacidosis. The human leukocyte antigen genotype was reported in 34.8% (8/23) of patients, 5 (62.5%) of which had risk genotypes.

Conclusions

As a serious adverse event of ICI treatment, APS-2 is presented with abrupt initiation time and rapid development. Physicians should be aware of potential endocrine disorders and continue monitoring hormone status when treating cancer patients with ICIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACA:

Adrenal cortex antibody

APS-2:

Autoimmune polyendocrine syndrome type II

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

DKA:

Diabetes ketoacidosis; FSH, follicle-stimulating hormone

FT4:

Free thyroxine

GAD:

Glutamic Acid Decarboxylase

HLA:

Human leukocyte antigen

ICI:

Immune checkpoint inhibitor

irAE:

Immune-related adverse event

LH:

Luteinizing hormone

NSCLC:

Non-small cell lung cancer

21-OH Ab:

21-Hydroxylase antibody

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death ligand 1

T1DM:

Type 1 Diabetes Mellitus

TPO:

Thyroid peroxidase antibody

TSH:

Thyroid stimulating hormone

References

  1. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17:e542–e551. https://doi.org/10.1016/s1470-2045(16)30406-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, Lanoy E, Texier M, Libenciuc C, Eggermont AMM, Soria J-C, Mateus C, Robert C (2016) Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 13:473–486. https://doi.org/10.1038/nrclinonc.2016.58

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Zhou S, Yang F, Qi X, Wang X, Guan X, Shen C, Duma N, Vera Aguilera J, Chintakuntlawar A, Price KA, Molina JR, Pagliaro LC, Halfdanarson TR, Grothey A, Markovic SN, Nowakowski GS, Ansell SM, Wang ML (2019) Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol 5:1008–1019. https://doi.org/10.1001/jamaoncol.2019.0393

    Article  PubMed Central  PubMed  Google Scholar 

  4. Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE, Tolaney SM (2018) Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol 4:173–182. https://doi.org/10.1001/jamaoncol.2017.3064

    Article  PubMed  Google Scholar 

  5. Husebye ES, Anderson MS, Kampe O (2018) Autoimmune polyendocrine syndromes. N Engl J Med 378:1132–1141. https://doi.org/10.1056/NEJMra1713301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schmidt MB (1926) Eine biglandulare Erkrankung (Nebennieren und Schilddruse bei Morbus Addisonni). Dtsch Pathol Ges 21:212–221

    Google Scholar 

  7. Lanzolla G, Coppelli A, Cosottini M, Del Prato S, Marcocci C, Lupi I (2019) Immune checkpoint blockade anti-PD-L1 as a trigger for autoimmune polyendocrine syndrome. J Endocr Soc 3:496–503. https://doi.org/10.1210/js.2018-00366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Gunjur A, Klein O, Kee D, Cebon J (2019) Anti-programmed cell death protein 1 (anti-PD1) immunotherapy induced autoimmune polyendocrine syndrome type II (APS-2): a case report and review of the literature. J Immunother Cancer. https://doi.org/10.1186/s40425-019-0713-y

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kuru S, Khan N, Shaaban H (2017) Acute hypophysitis secondary to nivolumab immunotherapy in a patient with metastatic melanoma. Int J Crit Illn Inj Sci 7:177–180. https://doi.org/10.4103/ijciis.Ijciis_15_17

    Article  PubMed Central  PubMed  Google Scholar 

  10. Kong SH, Lee SY, Yang YS, Kim TM, Kwak SH (2016) Anti-programmed cell death 1 therapy triggering diabetic ketoacidosis and fulminant type 1 diabetes. Acta Diabetol 53:853–856. https://doi.org/10.1007/s00592-016-0872-y

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Masood A, Bari S, Yavuz S, Grosbach AB (2017) Autoimmune diabetes and thyroiditis complicating treatment with nivolumab. Case Rep Oncol 10:230–234. https://doi.org/10.1159/000456540

    Article  PubMed Central  PubMed  Google Scholar 

  12. Aziz K, Shahbaz A, Umair M, Sachmechi I (2018) Avelumab inducing hypothyroidism and hypoadrenalism: a case report and review of literature. Excli J. https://doi.org/10.17179/excli2018-1357

    Article  PubMed Central  PubMed  Google Scholar 

  13. Humayun MA, Poole R (2016) A case of multiple immune toxicities from Ipilimumab and pembrolizumab treatment. Hormones (Athens). https://doi.org/10.14310/horm.2002.1656

    Article  Google Scholar 

  14. Hakami OA, Ioana J, Ahmad S, Tun TK, Sreenan S, McDermott JH (2019) A case of pembrolizumab-induced severe DKA and hypothyroidism in a patient with metastatic melanoma. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/edm-18-0153

    Article  PubMed Central  PubMed  Google Scholar 

  15. Hansen E, Sahasrabudhe D, Sievert L (2016) A case report of insulin-dependent diabetes as immune-related toxicity of pembrolizumab: presentation, management and outcome. Cancer Immunol Immunother 65:765–767. https://doi.org/10.1007/s00262-016-1835-4

    Article  PubMed  Google Scholar 

  16. Lupi I, Brancatella A, Cosottini M, Viola N, Lanzolla G, Sgrò D, Di Dalmazi G, Latrofa F, Caturegli P, Marcocci C (2019) Clinical heterogeneity of hypophysitis secondary to PD-1/PD-l1 blockade: insights from four cases. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/EDM-19-0102

    Article  PubMed Central  PubMed  Google Scholar 

  17. Patel S, Chin V, Greenfield JR (2019) Durvalumab-induced diabetic ketoacidosis followed by hypothyroidism. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/edm-19-0098

    Article  PubMed Central  PubMed  Google Scholar 

  18. Okahata S, Sakamoto K, Mitsumatsu T, Kondo Y, Noso S, Ikegami H, Shiba T (2019) Fulminant type 1 diabetes associated with Isolated ACTH deficiency induced by anti-programmed cell death 1 antibody-insight into the pathogenesis of autoimmune endocrinopathy. Endocr J 66:295–300. https://doi.org/10.1507/endocrj.EJ18-0328

    Article  CAS  PubMed  Google Scholar 

  19. Lowe JR, Perry DJ, Salama AK, Mathews CE, Moss LG, Hanks BA (2016) Genetic risk analysis of a patient with fulminant autoimmune type 1 diabetes mellitus secondary to combination ipilimumab and nivolumab immunotherapy. J Immunother Cancer. https://doi.org/10.1186/s40425-016-0196-z

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sum M, Garcia FV (2018) Immunotherapy-induced autoimmune diabetes and concomitant hypophysitis. Pituitary 21:556–557. https://doi.org/10.1007/s11102-018-0880-8

    Article  PubMed  Google Scholar 

  21. Marchand L, Paulus V, Fabien N, Pérol M, Thivolet C, Vouillarmet J, Saintigny P (2017) Nivolumab-induced acute diabetes mellitus and hypophysitis in a patient with advanced pulmonary pleomorphic carcinoma with a prolonged tumor response. J Thorac Oncol 12:e182–e184. https://doi.org/10.1016/j.jtho.2017.07.021

    Article  PubMed  Google Scholar 

  22. Tzoulis P, Corbett RW, Ponnampalam S, Baker E, Heaton D, Doulgeraki T, Stebbing J (2018) Nivolumab-induced fulminant diabetic ketoacidosis followed by thyroiditis. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/edm-18-0111

    Article  PubMed Central  PubMed  Google Scholar 

  23. Martins Machado C, Almeida Santos L, Barroso A, Oliveira MJ (2019) Nivolumab-induced hypothyroidism followed by isolated ACTH deficiency. BMJ Case Rep. https://doi.org/10.1136/bcr-2019-231236

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sakurai K, Niitsuma S, Sato R, Takahashi K, Arihara Z (2018) Painless thyroiditis and fulminant type 1 diabetes mellitus in a patient treated with an immune checkpoint inhibitor, nivolumab. Tohoku J Exp Med 244:33–40. https://doi.org/10.1620/tjem.244.33

    Article  PubMed  Google Scholar 

  25. Paepegaey AC, Lheure C, Ratour C, Lethielleux G, Clerc J, Bertherat J, Kramkimel N, Groussin L (2017) Polyendocrinopathy resulting from pembrolizumab in a patient with a Malignant Melanoma. J Endocr Soc 1:646–649. https://doi.org/10.1210/js.2017-00170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Erra A, Pannu BS, Patel S, Qureshi F, Soliman M (2019) A rare case of ipilimumab-induced reversible hypophysitis and permanent primary hypothyroidism. Cureus. https://doi.org/10.7759/cureus.5001

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kurihara S, Oikawa Y, Nakajima R, Satomura A, Tanaka R, Kagamu H, Shimada A (2020) Simultaneous development of graves' disease and type 1 diabetes during anti-programmed cell death-1 therapy: a case report. J Diabetes Investig. https://doi.org/10.1111/jdi.13212

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mengíbar JL, Capel I, Bonfill T, Mazarico I, Espuña LC, Caixàs A, Rigla M (2019) Simultaneous onset of type 1 diabetes mellitus and silent thyroiditis under durvalumab treatment. Endocrinol Diabetes Metab Case Rep. https://doi.org/10.1530/EDM-19-0045

    Article  PubMed  Google Scholar 

  29. Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276. https://doi.org/10.1016/j.it.2015.02.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Osorio JC, Ni A, Chaft JE, Pollina R, Kasler MK, Stephens D, Rodriguez C, Cambridge L, Rizvi H, Wolchok JD, Merghoub T, Rudin CM, Fish S, Hellmann MD (2017) Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol 28:583–589. https://doi.org/10.1093/annonc/mdw640

    Article  CAS  PubMed  Google Scholar 

  31. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378:158–168. https://doi.org/10.1056/NEJMra1703481

    Article  CAS  PubMed  Google Scholar 

  32. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner JM, Ginex P, Hallmeyer S, Holter Chakrabarty J, Leighl NB, Mammen JS, McDermott DF, Naing A, Nastoupil LJ, Phillips T, Porter LD, Puzanov I, Reichner CA, Santomasso BD, Seigel C, Spira A, Suarez-Almazor ME, Wang Y, Weber JS, Wolchok JD, Thompson JA, National Comprehensive Cancer N (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36:1714–1768. https://doi.org/10.1200/JCO.2017.77.6385

    Article  CAS  PubMed  Google Scholar 

  33. Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M (2019) Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 16:563–580. https://doi.org/10.1038/s41571-019-0218-0

    Article  CAS  PubMed  Google Scholar 

  34. Wang DY, Salem J-E, Cohen JV, Chandra S, Menzer C, Ye F, Zhao S, Das S, Beckermann KE, Ha L, Rathmell WK, Ancell KK, Balko JM, Bowman C, Davis EJ, Chism DD, Horn L, Long GV, Carlino MS, Lebrun-Vignes B, Eroglu Z, Hassel JC, Menzies AM, Sosman JA, Sullivan RJ, Moslehi JJ, Johnson DB (2018) Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 4:1721–1728. https://doi.org/10.1001/jamaoncol.2018.3923

    Article  PubMed Central  PubMed  Google Scholar 

  35. Weber JS, Yang JC, Atkins MB, Disis ML (2015) Toxicities of immunotherapy for the practitioner. J Clin Oncol 33:2092–2099. https://doi.org/10.1200/JCO.2014.60.0379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Xu C, Chen Y-P, Du X-J, Liu J-Q, Huang C-L, Chen L, Zhou G-Q, Li W-F, Mao Y-P, Hsu C, Liu Q, Lin A-H, Tang L-L, Sun Y, Ma J (2018) Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ. https://doi.org/10.1136/bmj.k4226

    Article  PubMed Central  PubMed  Google Scholar 

  37. Calabrese LH, Calabrese C, Cappelli LC (2018) Rheumatic immune-related adverse events from cancer immunotherapy. Nat Rev Rheumatol 14:569–579. https://doi.org/10.1038/s41584-018-0074-9

    Article  PubMed  Google Scholar 

  38. Chang L-S, Barroso-Sousa R, Tolaney SM, Hodi FS, Kaiser UB, Min L (2019) Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. Endocr Rev 40:17–65. https://doi.org/10.1210/er.2018-00006

    Article  PubMed  Google Scholar 

  39. Suresh K, Voong KR, Shankar B, Forde PM, Ettinger DS, Marrone KA, Kelly RJ, Hann CL, Levy B, Feliciano JL, Brahmer JR, Feller-Kopman D, Lerner AD, Lee H, Yarmus L, D'Alessio F, Hales RK, Lin CT, Psoter KJ, Danoff SK, Naidoo J (2018) Pneumonitis in non-small cell lung cancer patients receiving immune checkpoint immunotherapy: incidence and risk factors. J Thorac Oncol 13:1930–1939. https://doi.org/10.1016/j.jtho.2018.08.2035

    Article  CAS  PubMed  Google Scholar 

  40. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  PubMed  Google Scholar 

  41. Conforti F, Pala L, Bagnardi V, De Pas T, Martinetti M, Viale G, Gelber RD, Goldhirsch A (2018) Cancer immunotherapy efficacy and patients' sex: a systematic review and meta-analysis. Lancet Oncol 19:737–746. https://doi.org/10.1016/s1470-2045(18)30261-4

    Article  CAS  PubMed  Google Scholar 

  42. Khunger M, Rakshit S, Pasupuleti V, Hernandez AV, Mazzone P, Stevenson J, Pennell NA, Velcheti V (2017) Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer: a systematic review and meta-analysis of trials. Chest 152:271–281. https://doi.org/10.1016/j.chest.2017.04.177

    Article  PubMed  Google Scholar 

  43. Duan J, Cui L, Zhao X, Bai H, Cai S, Wang G, Zhao Z, Zhao J, Chen S, Song J, Qi C, Wang Q, Huang M, Zhang Y, Huang D, Bai Y, Sun F, Lee JJ, Wang Z, Wang J (2019) Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in patients with cancer: a systematic review and meta-analysis. JAMA Oncol 6:375–384. https://doi.org/10.1001/jamaoncol.2019.5367

    Article  PubMed Central  Google Scholar 

  44. Min L (2016) Immune-related endocrine disorders in novel immune checkpoint inhibition therapy. Genes Dis 3:252–256. https://doi.org/10.1016/j.gendis.2016.10.002

    Article  PubMed Central  PubMed  Google Scholar 

  45. de Filette J, Andreescu CE, Cools F, Bravenboer B, Velkeniers B (2019) A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res 51:145–156. https://doi.org/10.1055/a-0843-3366

    Article  CAS  PubMed  Google Scholar 

  46. Khoja L, Day D, Wei-Wu Chen T, Siu LL, Hansen AR (2017) Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol 28:2377–2385. https://doi.org/10.1093/annonc/mdx286

    Article  CAS  PubMed  Google Scholar 

  47. Kim HI, Kim M, Lee SH, Park SY, Kim YN, Kim H, Jeon MJ, Kim TY, Kim SW, Kim WB, Kim SW, Lee DH, Park K, Ahn MJ, Chung JH, Shong YK, Kim WG, Kim TH (2017) Development of thyroid dysfunction is associated with clinical response to PD-1 blockade treatment in patients with advanced non-small cell lung cancer. Oncoimmunology 7:e1375642. https://doi.org/10.1080/2162402x.2017.1375642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Berner F, Bomze D, Diem S, Ali OH, Fässler M, Ring S, Niederer R, Ackermann CJ, Baumgaertner P, Pikor N, Cruz CG, van de Veen W, Akdis M, Nikolaev S, Läubli H, Zippelius A, Hartmann F, Cheng HW, Hönger G, Recher M, Goldman J, Cozzio A, Früh M, Neefjes J, Driessen C, Ludewig B, Hegazy AN, Jochum W, Speiser DE, Flatz L (2019) Association of Checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol 5:1043–1047. https://doi.org/10.1001/jamaoncol.2019.0402

    Article  PubMed  Google Scholar 

  49. Xing P, Zhang F, Wang G, Xu Y, Li C, Wang S, Guo Y, Cai S, Wang Y, Li J (2019) Incidence rates of immune-related adverse events and their correlation with response in advanced solid tumours treated with NIVO or NIVO+IPI: a systematic review and meta-analysis. J Immunother Cancer. https://doi.org/10.1186/s40425-019-0779-6

    Article  PubMed Central  PubMed  Google Scholar 

  50. Downey SG, Klapper JA, Smith FO, Yang JC, Sherry RM, Royal RE, Kammula US, Hughes MS, Allen TE, Levy CL, Yellin M, Nichol G, White DE, Steinberg SM, Rosenberg SA (2007) Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res 13:6681–6688. https://doi.org/10.1158/1078-0432.Ccr-07-0187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Weber JS, Hodi FS, Wolchok JD, Topalian SL, Schadendorf D, Larkin J, Sznol M, Long GV, Li H, Waxman IM, Jiang J, Robert C (2017) Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol 35:785–792. https://doi.org/10.1200/jco.2015.66.1389

    Article  CAS  PubMed  Google Scholar 

  52. Ascierto PA, Simeone E, Sileni VC, Pigozzo J, Maio M, Altomonte M, Del Vecchio M, Di Guardo L, Marchetti P, Ridolfi R, Cognetti F, Testori A, Bernengo MG, Guida M, Marconcini R, Mandalà M, Cimminiello C, Rinaldi G, Aglietta M, Queirolo P (2014) Clinical experience with ipilimumab 3 mg/kg: real-world efficacy and safety data from an expanded access programme cohort. J Transl Med. https://doi.org/10.1186/1479-5876-12-116

    Article  PubMed Central  PubMed  Google Scholar 

  53. Attia P, Phan GQ, Maker AV, Robinson MR, Quezado MM, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, Restifo NP, Haworth LR, Levy C, Mavroukakis SA, Nichol G, Yellin MJ, Rosenberg SA (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23:6043–6053. https://doi.org/10.1200/jco.2005.06.205

    Article  CAS  PubMed  Google Scholar 

  54. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, Bulashevska A, Petersen BS, Schäffer AA, Grüning BA, Unger S, Frede N, Baumann U, Witte T, Schmidt RE, Dueckers G, Niehues T, Seneviratne S, Kanariou M, Speckmann C, Ehl S, Rensing-Ehl A, Warnatz K, Rakhmanov M, Thimme R, Hasselblatt P, Emmerich F, Cathomen T, Backofen R, Fisch P, Seidl M, May A, Schmitt-Graeff A, Ikemizu S, Salzer U, Franke A, Sakaguchi S, Walker LSK, Sansom DM, Grimbacher B (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20:1410–1416. https://doi.org/10.1038/nm.3746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hashimoto K, Maruyama H, Nishiyama M, Asaba K, Ikeda Y, Takao T, Iwasaki Y, Kumon Y, Suehiro T, Tanimoto N, Mizobuchi M, Nakamura T (2005) Susceptibility alleles and haplotypes of human leukocyte antigen DRB1, DQA1, and DQB1 in autoimmune polyglandular syndrome type III in Japanese population. Horm Res 64:253–260. https://doi.org/10.1159/000089293

    Article  CAS  PubMed  Google Scholar 

  56. Awata T, Kuzuya T, Matsuda A, Iwamoto Y, Kanazawa Y (1992) Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects. Diabetologia 35:419–424. https://doi.org/10.1007/bf02342437

    Article  CAS  PubMed  Google Scholar 

  57. Yasunaga S, Kimura A, Hamaguchi K, Ronningen KS, Sasazuki T (1996) Different contribution of HLA-DR and -DQ genes in susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM). Tissue Antigens 47:37–48. https://doi.org/10.1111/j.1399-0039.1996.tb02512.x

    Article  CAS  PubMed  Google Scholar 

  58. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, Mychaleckyj JC, Todd JA, Bonella P, Fear AL, Lavant E, Louey A, Moonsamy P, Type 1 Diabetes Genetics C (2008) HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57:1084–1092. https://doi.org/10.2337/db07-1331

    Article  CAS  PubMed  Google Scholar 

  59. Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, Folli F, Richter-Olesen H, De Camilli P (1990) Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347:151–156. https://doi.org/10.1038/347151a0

    Article  CAS  PubMed  Google Scholar 

  60. Czarnocka B, Ruf J, Ferrand M, Carayon P, Lissitzky S (1985) Purification of the human thyroid peroxidase and its identification as the microsomal antigen involved in autoimmune thyroid diseases. FEBS Lett 190:147–152. https://doi.org/10.1016/0014-5793(85)80446-4

    Article  CAS  PubMed  Google Scholar 

  61. Winqvist O, Karlsson FA, Kämpe O (1992) 21-Hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 339:1559–1562. https://doi.org/10.1016/0140-6736(92)91829-w

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Sciences Foundation of China (81630097 and 81773718), the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2016-I2M-3–011), the Chinese Academy of Medical Sciences Fundamental Research Funds for the Central Universities (2018RC350002), and the Drug Innovation Major Project (2018ZX09711001-003–005, 2018ZX09711001-008–005, and 2018ZX09711001-003–020).

Author information

Authors and Affiliations

Authors

Contributions

We declare that all authors made fundamental contributions to the manuscript. All authors contributed to the study conception and design. Database search and data analysis was conducted by WX. Study selection and data extraction were performed by NJ and SM. The manuscript was written by ZZ. BX and ZD reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dan Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Wang, X., Bao, Xq. et al. Autoimmune polyendocrine syndrome induced by immune checkpoint inhibitors: a systematic review. Cancer Immunol Immunother 70, 1527–1540 (2021). https://doi.org/10.1007/s00262-020-02699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02699-1

Keywords

Navigation