Skip to main content

Advertisement

Log in

Tumor-associated macrophages expressing galectin-9 identify immunoevasive subtype muscle-invasive bladder cancer with poor prognosis but favorable adjuvant chemotherapeutic response

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

Tumor-associated macrophages (TAMs) exist as heterogeneous subsets and have dichotomous roles in cancer-immune evasion. This study aims to assess the clinical effects of Galectin-9+ tumor-associated macrophages (Gal-9+TAMs) in muscle-invasive bladder cancer (MIBC).

Experimental design

We identified Gal-9+TAMs by immunohistochemistry (IHC) analysis of a tumor microarray (TMA) (n = 141) from the Zhongshan Hospital and by flow cytometric analysis of tumor specimens (n = 20) from the Shanghai Cancer Center. The survival benefit of platinum-based chemotherapy in this subpopulation was evaluated. The effect of the tumor-immune microenvironment with different percentages of Gal-9+TAMs was explored.

Results

The frequency of Gal-9+TAMs increased with tumor stage and grade. Gal-9+TAMs predicted poor overall survival (OS) and recurrence-free survival (RFS) and were better than Gal-9TAMs and TAMs to discriminate prognostic groups. In univariate and multivariate Cox regression analyses, patients with high percentages of Gal-9+TAMs showed the prominent survival benefit after receiving adjuvant chemotherapy (ACT). High Gal-9+TAM infiltration correlated with increasing numbers of regulatory T cells (Tregs) and mast cells and decreasing numbers of CD8+T and dendritic cells (DCs). Dense infiltration of Gal-9+TAMs was related to reduced cytotoxic molecules, enhanced immune checkpoints or immunosuppressive cytokines expressed by immune cells, as well as active proliferation of tumor cells. Additionally, the subpopulation accumulated was strongly associated with PD-1+TIM-3+CD8+T cells.

Conclusions

Gal-9+TAMs predicted OS and RFS and response to ACT in MIBC patients. High Gal-9+TAMs were associated with a pro-tumor immune contexture concomitant with T cell exhaustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACT:

Adjuvant chemotherapy

AJCC:

American Joint Committee on Cancer

AP:

Alkaline phosphatase

DAB:

Diaminobenzidine

DBSS:

Dulbecco’s balanced salt solution

FCM:

Flow cytometry

Gal-9+TAMs:

Galectin-9+ tumor-associated macrophages

Gal-9TAMs:

Galectin-9 tumor-associated macrophages

GZMB:

Granzyme B

HCI:

Hydrochloric acid

HR:

Hazard ratio

HRP:

Horseradish peroxidase

ICIs:

Immune checkpoint inhibitors

LVI:

Lymphovascular invasion

MIBC:

Muscle-invasive bladder cancer

PRF1:

Perforin 1

RFS:

Recurrence-free survival

TAMs:

Tumor-associated macrophages

TIGIT:

T-cell Ig and ITIM domain

TMA:

Tissue microarray

References

  1. (2019) 17th International Congress of Immunology (2019) Beijing, China. Eur J Immunol 49:1–2223. https://doi.org/10.1002/eji.201970400

    Article  CAS  Google Scholar 

  2. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, Lotan Y (2017) Bladder cancer. Nat Rev Dis Primers 3:17022. https://doi.org/10.1038/nrdp.2017.22

    Article  PubMed  Google Scholar 

  3. Alfred Witjes J, Lebret T, Comperat EM et al (2017) Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur Urol 71:462–475. https://doi.org/10.1016/j.eururo.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  4. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541:321–330. https://doi.org/10.1038/nature21349

    Article  CAS  PubMed  Google Scholar 

  5. Spiess PE, Agarwal N, Bangs R et al (2017) Bladder cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15:1240–1267. https://doi.org/10.6004/jnccn.2017.0156

    Article  Google Scholar 

  6. Zibelman M, Ramamurthy C, Plimack ER (2016) Emerging role of immunotherapy in urothelial carcinoma-advanced disease. Urol Oncol 34:538–547. https://doi.org/10.1016/j.urolonc.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  7. Sjodahl G, Lovgren K, Lauss M et al (2014) Infiltration of CD3(+) and CD68(+) cells in bladder cancer is subtype specific and affects the outcome of patients with muscle-invasive tumors. Urol Oncol 32:791–797. https://doi.org/10.1016/j.urolonc.2014.02.007

    Article  PubMed  Google Scholar 

  8. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727. https://doi.org/10.1016/j.ejca.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  9. Ichimura T, Morikawa T, Kawai T et al (2014) Prognostic significance of CD204-positive macrophages in upper urinary tract cancer. Ann Surg Oncol 21:2105–2112. https://doi.org/10.1245/s10434-014-3503-2

    Article  PubMed  Google Scholar 

  10. Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G (2017) The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 14:717–734. https://doi.org/10.1038/nrclinonc.2017.101

    Article  CAS  PubMed  Google Scholar 

  11. Helm O, Held-Feindt J, Grage-Griebenow E et al (2014) Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 135:843–861. https://doi.org/10.1002/ijc.28736

    Article  CAS  PubMed  Google Scholar 

  12. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  13. Irie A, Yamauchi A, Kontani K et al (2005) Galectin-9 as a prognostic factor with antimetastatic potential in breast cancer. Clin Cancer Res 11:2962–2968. https://doi.org/10.1158/1078-0432.ccr-04-0861

    Article  CAS  PubMed  Google Scholar 

  14. Choi SI, Seo KW, Kook MC, Kim CG, Kim YW, Cho SJ (2017) Prognostic value of tumoral expression of galectin-9 in gastric cancer. Turk J Gastroenterol 28:166–170. https://doi.org/10.5152/tjg.2017.16346

    Article  PubMed  Google Scholar 

  15. Wang Y, Sun J, Ma C et al (2016) Reduced expression of Galectin-9 contributes to a poor outcome in colon cancer by inhibiting NK cell chemotaxis partially through the Rho/ROCK1 signaling pathway. PLoS One 11:e0152599. https://doi.org/10.1371/journal.pone.0152599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sideras K, Biermann K, Verheij J et al (2017) PD-L1, Galectin-9 and CD8 + tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma. OncoImmunology 6:e1273309. https://doi.org/10.1080/2162402X.2016.1273309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Liu Z, Fu Q, Wang Z, Fu H, Liu W, Wang Y, Xu J (2017) Galectin-9 as a prognostic and predictive biomarker in bladder urothelial carcinoma. Urol Oncol 35:349–355. https://doi.org/10.1016/j.urolonc.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  18. Li H, Wu K, Tao K et al (2012) Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 56:1342–1351. https://doi.org/10.1002/hep.25777

    Article  CAS  PubMed  Google Scholar 

  19. Kratochvill F, Neale G, Haverkamp JM et al (2015) TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep 12:1902–1914. https://doi.org/10.1016/j.celrep.2015.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melief SM, Visconti VV, Visser M et al (2017) Long-term survival and clinical benefit from adoptive T-cell transfer in Stage IV melanoma patients is determined by a four-parameter tumor immune signature. Cancer Immunol Res 5:170–179. https://doi.org/10.1158/2326-6066.CIR-16-0288

    Article  CAS  PubMed  Google Scholar 

  21. Fu H, Zhu Y, Wang Y et al (2018) Identification and validation of stromal immunotype predict survival and benefit from adjuvant chemotherapy in patients with muscle invasive bladder cancer. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-17-2687

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu Z, Zhu Y, Xu L et al (2018) Tumor stroma-infiltrating mast cells predict prognosis and adjuvant chemotherapeutic benefits in patients with muscle invasive bladder cancer. OncoImmunology 7:e1474317. https://doi.org/10.1080/2162402x.2018.1474317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Becht E, Giraldo NA, Dieu-Nosjean MC, Sautes-Fridman C, Fridman WH (2016) Cancer immune contexture and immunotherapy. Curr Opin Immunol 39:7–13. https://doi.org/10.1016/j.coi.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  24. Heusschen R, Griffioen AW, Thijssen VL (2013) Galectin-9 in tumor biology: a jack of multiple trades. Biochim Biophys Acta 1836:177–185. https://doi.org/10.1016/j.bbcan.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  25. Ohue Y, Kurose K, Nozawa R et al (2016) Survival of lung adenocarcinoma patients predicted from expression of PD-L1, Galectin-9, and XAGE1 (GAGED2a) on tumor cells and tumor-infiltrating T cells. Cancer Immunol Res 4:1049–1060. https://doi.org/10.1158/2326-6066.CIR-15-0266

    Article  CAS  PubMed  Google Scholar 

  26. Enninga EA, Nevala WK, Holtan SG, Leontovich AA, Markovic SN (2016) Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Res 26:429–441. https://doi.org/10.1097/CMR.0000000000000281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Enninga EAL, Chatzopoulos K, Butterfield JT, Sutor SL, Leontovich AA, Nevala WK, Flotte TJ, Markovic SN (2018) CD206-positive myeloid cells bind galectin-9 and promote a tumor-supportive microenvironment. J Pathol 245:468–477. https://doi.org/10.1002/path.5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800. https://doi.org/10.1056/NEJMra0801289

    Article  CAS  PubMed  Google Scholar 

  29. Keren L, Bosse M, Marquez D et al (2018) A Structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174(1373–87):e19. https://doi.org/10.1016/j.cell.2018.08.039

    Article  CAS  Google Scholar 

  30. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28:690–714. https://doi.org/10.1016/j.ccell.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  31. Iwamoto T, Bianchini G, Booser D et al (2011) Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Cancer Inst 103:264–272. https://doi.org/10.1093/jnci/djq524

    Article  CAS  PubMed  Google Scholar 

  32. Ayari C, LaRue H, Hovington H, Decobert M, Harel F, Bergeron A, Tetu B, Lacombe L, Fradet Y (2009) Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy. Eur Urol 55:1386–1395. https://doi.org/10.1016/j.eururo.2009.01.040

    Article  CAS  PubMed  Google Scholar 

  33. Ayari C, LaRue H, Hovington H, Caron A, Bergeron A, Tetu B, Fradet V, Fradet Y (2013) High level of mature tumor-infiltrating dendritic cells predicts progression to muscle invasion in bladder cancer. Hum Pathol 44:1630–1637. https://doi.org/10.1016/j.humpath.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  34. Winerdal ME, Marits P, Winerdal M, Hasan M, Rosenblatt R, Tolf A, Selling K, Sherif A, Winqvist O (2011) FOXP3 and survival in urinary bladder cancer. BJU Int 108:1672–1678. https://doi.org/10.1111/j.1464-410X.2010.10020.x

    Article  CAS  PubMed  Google Scholar 

  35. Di Caro G, Cortese N, Castino GF et al (2016) Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 65:1710–1720. https://doi.org/10.1136/gutjnl-2015-309193

    Article  CAS  PubMed  Google Scholar 

  36. Golden-Mason L, Rosen HR (2017) Galectin-9: diverse roles in hepatic immune homeostasis and inflammation. Hepatology 66:271–279. https://doi.org/10.1002/hep.29106

    Article  CAS  PubMed  Google Scholar 

  37. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059. https://doi.org/10.1038/nm1622

    Article  CAS  PubMed  Google Scholar 

  38. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma P, Callahan MK, Bono P et al (2016) Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 17:1590–1598. https://doi.org/10.1016/s1470-2045(16)30496-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486. https://doi.org/10.1038/nri3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aitken M, Kleinrock M, Simorellis A, Nass D (2018) Global oncology trends 2018. Innovation, expansion and disruption. IQVIA Institute for Human Data Science. Parsippany Google Scholar. https://www.iqvia.com/institute/reports/global-oncology-trends-2018. Accessed 24 May 2018

  42. Galsky MD, Wang H, Hahn NM et al (2018) Phase 2 trial of gemcitabine, cisplatin, plus ipilimumab in patients with metastatic urothelial cancer and impact of DNA damage response gene mutations on outcomes. Eur Urol 73:751–759

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grants from the National Natural Science Foundation of China (81671628, 31770851, 81702496, 81702497, 81702805, 81772696, 81871306, 81872082, 81902556, 81902563, 81902898, 81974393), the National Key R&D Program of China (2017YFC0114303), the Shanghai Municipal Natural Science Foundation (16ZR1406500, 17ZR1405100, 19ZR1431800), the Guide Project of Science and Technology Commission of Shanghai Municipality (17411963100), the Shanghai Sailing Program (18YF1404500, 19YF1407900, 19YF1427200), the Shanghai Municipal Commission of Health and Family Planning Program (20174Y0042, 201840168, 20184Y0151), the Fudan University Shanghai Cancer Center for Outstanding Youth Scholars Foundation (YJYQ201802) and a grant from the Shanghai Cancer Research Charity Center. None of the study sponsors contributed to the study design, or the collection, analysis or interpretation of data.

Author information

Authors and Affiliations

Authors

Contributions

YQ, YC, ZW and LC contributed to the acquisition, analysis and interpretation of data, statistical analysis and drafting of the manuscript. YK, PZ, ZL, QZ, YC, JW, QB, YX, LL, YZ, LX, BD and JG provided technical and material support; YW, WZ and JX were responsible for the study concept and design, analysis and interpretation of data, drafting of the manuscript, obtaining funding and study supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yiwei Wang, Jiejie Xu or Weijuan Zhang.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethics approval and ethical standards

This study was approved by the Clinical Research Ethics Committee of Zhongshan Hospital, Fudan University (No. B2015-030) and the institutional review board and the ethics committee of Shanghai Cancer Center, Fudan University (No. 050432-4-1212B). This study was performed following the ethical principles of the Helsinki Declaration.

Informed consent

Patients from the Zhongshan hospital and the Shanghai Cancer Center signed informed consent forms before surgery that permitted the usage of specimens and clinical data for research and publication under the condition of anonymity.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Parts of this paper were presented at the 17th International Congress of Immunology, 19–23 October 2019, Beijing, China, and published as an abstract in the European Journal of Immunology [1].

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Chang, Y., Wang, Z. et al. Tumor-associated macrophages expressing galectin-9 identify immunoevasive subtype muscle-invasive bladder cancer with poor prognosis but favorable adjuvant chemotherapeutic response. Cancer Immunol Immunother 68, 2067–2080 (2019). https://doi.org/10.1007/s00262-019-02429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02429-2

Keywords

Navigation