Skip to main content

Mucosal-Associated Invariant T Cells in Tumors of Epithelial Origin

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1224))

Abstract

Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes that circulate in blood and also reside in mucosal tissues. Blood MAIT cells are typically highly Th1-polarized, while those in mucosal tissues include both Th1- and Th17-polarized subsets. MAIT cells mount cytokine and cytolytic responses as a result of T cell receptor (TCR)-mediated recognition of microbially derived metabolites of riboflavin (vitamin B2) presented by the MR1 antigen-presenting molecule. Additionally, MAIT cells can be activated by inflammatory cytokines produced by antigen-presenting cells (APCs) that have been exposed to pathogen-associated molecular patterns (PAMPs). Since the antigenic metabolites of riboflavin recognized by MAIT cells are produced by many microorganisms, including pathogens as well as non-pathogenic colonists, the inflammatory state of the tissue may be a key feature that determines the nature of MAIT cell responses. Under normal conditions where inflammatory cytokines are not produced, MAIT cell responses to microbial metabolites may simply serve to help maintain a healthy balance between epithelial cells and microbial colonists. In contrast, in situations where inflammatory cytokines are produced (e.g., pathogenic infection or damage to epithelial tissue), MAIT cell responses may be more potently pro-inflammatory. Since chronic inflammation and microbial drivers are associated with tumorigenesis and also trigger MAIT cell responses, the nexus of MAIT cells, local microbiomes, and epithelial cells may play an important role in epithelial carcinogenesis. This chapter reviews current information about MAIT cells and epithelial tumors, where the balance of evidence suggests that enrichment of Th17-polarized MAIT cells at tumor sites associates with poor patient prognosis. Studying the role of MAIT cells and their interactions with resident microbes offers a novel view of the biology of epithelial tumor progression and may ultimately lead to new approaches to target MAIT cells clinically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dias J, Leeansyah E, Sandberg JK (2017) Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A 114(27):E5434–E5443. https://doi.org/10.1073/pnas.1705759114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422(6928):164–169. https://doi.org/10.1038/nature01433

    Article  CAS  PubMed  Google Scholar 

  3. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491(7426):717–723. https://doi.org/10.1038/nature11605

    Article  CAS  PubMed  Google Scholar 

  4. Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R, Beddoe T, Corbett AJ, Liu L, Miles JJ, Meehan B, Reantragoon R, Sandoval-Romero ML, Sullivan LC, Brooks AG, Chen Z, Fairlie DP, McCluskey J, Rossjohn J (2013) Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun 4:2142. https://doi.org/10.1038/ncomms3142

    Article  CAS  PubMed  Google Scholar 

  5. McWilliam HEG, Villadangos JA (2017) How MR1 presents a pathogen metabolic signature to mucosal-associated invariant T (MAIT) cells. Trends Immunol 38(9):679–689. https://doi.org/10.1016/j.it.2017.06.005

    Article  CAS  PubMed  Google Scholar 

  6. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508(7496):397–401. https://doi.org/10.1038/nature13047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomas SY, Scanlon ST, Griewank KG, Constantinides MG, Savage AK, Barr KA, Meng F, Luster AD, Bendelac A (2011) PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med 208(6):1179–1188. https://doi.org/10.1084/jem.20102630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharma A, Lawry SM, Klein BS, Wang X, Sherer NM, Zumwalde NA, Gumperz JE (2018) LFA-1 ligation by high-density ICAM-1 is sufficient to activate IFN-γ release by innate T lymphocytes. J Immunol 201(8):2452–2461. https://doi.org/10.4049/jimmunol.1800537

    Article  CAS  PubMed  Google Scholar 

  9. Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y, Bessoles S, Soudais C, Lantz O (2013) Double-positive thymocytes select mucosal-associated invariant T cells. J Immunol 191(12):6002–6009. https://doi.org/10.4049/jimmunol.1301212

    Article  CAS  PubMed  Google Scholar 

  10. Salou M, Legoux F, Gilet J, Darbois A, du Halgouet A, Alonso R, Richer W, Goubet AG, Daviaud C, Menger L, Procopio E, Premel V, Lantz O (2019) A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J Exp Med 216(1):133–151. https://doi.org/10.1084/jem.20181483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koay HF, Gherardin NA, Enders A, Loh L, Mackay LK, Almeida CF, Russ BE, Nold-Petry CA, Nold MF, Bedoui S, Chen Z, Corbett AJ, Eckle SB, Meehan B, d’Udekem Y, Konstantinov IE, Lappas M, Liu L, Goodnow CC, Fairlie DP, Rossjohn J, Chong MM, Kedzierska K, Berzins SP, Belz GT, McCluskey J, Uldrich AP, Godfrey DI, Pellicci DG (2016) A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat Immunol 17(11):1300–1311. https://doi.org/10.1038/ni.3565

    Article  CAS  PubMed  Google Scholar 

  12. Koay HF, Godfrey DI, Pellicci DG (2018) Development of mucosal-associated invariant T cells. Immunol Cell Biol 96(6):598–606. https://doi.org/10.1111/imcb.12039

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O (2009) Stepwise development of MAIT cells in mouse and human. PLoS Biol 7(3):e54. https://doi.org/10.1371/journal.pbio.1000054

    Article  CAS  PubMed  Google Scholar 

  14. Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123. https://doi.org/10.1038/ni.3298

    Article  CAS  PubMed  Google Scholar 

  15. Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, Premel V, Martin E, Kachaner A, Duban L, Ingersoll MA, Rabot S, Jaubert J, De Villartay JP, Soudais C, Lantz O (2015) Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J Clin Invest 125(11):4171–4185. https://doi.org/10.1172/JCI82424

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lantz O, Legoux F (2019) MAIT cells: programmed in the thymus to mediate immunity within tissues. Curr Opin Immunol 58:75–82. https://doi.org/10.1016/j.coi.2019.04.016

    Article  CAS  PubMed  Google Scholar 

  17. Howson LJ, Napolitani G, Shepherd D, Ghadbane H, Kurupati P, Preciado-Llanes L, Rei M, Dobinson HC, Gibani MM, Teng KWW, Newell EW, Veerapen N, Besra GS, Pollard AJ, Cerundolo V (2018) MAIT cell clonal expansion and TCR repertoire shaping in human volunteers challenged with Salmonella Paratyphi A. Nat Commun 9(1):253. https://doi.org/10.1038/s41467-017-02540-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haeryfar SMM, Shaler CR, Rudak PT (2018) Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe? Cancer Immunol Immunother 67(12):1885–1896. https://doi.org/10.1007/s00262-018-2132-1

    Article  CAS  PubMed  Google Scholar 

  19. Berkson JD, Prlic M (2017) The MAIT conundrum—how human MAIT cells distinguish bacterial colonization from infection in mucosal barrier tissues. Immunol Lett 192:7–11. https://doi.org/10.1016/j.imlet.2017.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurioka A, Walker LJ, Klenerman P, Willberg CB (2016) MAIT cells: new guardians of the liver. Clin Transl Immunol 5(8):e98. https://doi.org/10.1038/cti.2016.51

    Article  CAS  Google Scholar 

  21. Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117(4):1250–1259. https://doi.org/10.1182/blood-2010-08-303339

    Article  CAS  PubMed  Google Scholar 

  22. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM (2010) Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8(6):e1000407. https://doi.org/10.1371/journal.pbio.1000407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peterfalvi A, Gomori E, Magyarlaki T, Pal J, Banati M, Javorhazy A, Szekeres-Bartho J, Szereday L, Illes Z (2008) Invariant Valpha7.2-Jalpha33 TCR is expressed in human kidney and brain tumors indicating infiltration by mucosal-associated invariant T (MAIT) cells. Int Immunol 20(12):1517–1525. https://doi.org/10.1093/intimm/dxn111

    Article  CAS  PubMed  Google Scholar 

  24. Serriari NE, Eoche M, Lamotte L, Lion J, Fumery M, Marcelo P, Chatelain D, Barre A, Nguyen-Khac E, Lantz O, Dupas JL, Treiner E (2014) Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol 176(2):266–274. https://doi.org/10.1111/cei.12277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibbs A, Leeansyah E, Introini A, Paquin-Proulx D, Hasselrot K, Andersson E, Broliden K, Sandberg JK, Tjernlund A (2017) MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol 10(1):35–45. https://doi.org/10.1038/mi.2016.30

    Article  CAS  PubMed  Google Scholar 

  26. Leeansyah E, Loh L, Nixon DF, Sandberg JK (2014) Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun 5:3143. https://doi.org/10.1038/ncomms4143

    Article  CAS  PubMed  Google Scholar 

  27. Lepore M, Kalinichenko A, Kalinicenko A, Colone A, Paleja B, Singhal A, Tschumi A, Lee B, Poidinger M, Zolezzi F, Quagliata L, Sander P, Newell E, Bertoletti A, Terracciano L, De Libero G, Mori L (2014) Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat Commun 5:3866. https://doi.org/10.1038/ncomms4866

    Article  CAS  PubMed  Google Scholar 

  28. Zumwalde NA, Haag JD, Gould MN, Gumperz JE (2018) Mucosal associated invariant T cells from human breast ducts mediate a Th17-skewed response to bacterially exposed breast carcinoma cells. Breast Cancer Res 20(1):111. https://doi.org/10.1186/s13058-018-1036-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Voillet V, Buggert M, Slichter CK, Berkson JD, Mair F, Addison MM, Dori Y, Nadolski G, Itkin MG, Gottardo R, Betts MR, Prlic M (2018) Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions. JCI Insight 3(7):e98487. https://doi.org/10.1172/jci.insight.98487

    Article  PubMed Central  Google Scholar 

  30. Dias J, Sobkowiak MJ, Sandberg JK, Leeansyah E (2016) Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity. J Leukoc Biol 100(1):233–240. https://doi.org/10.1189/jlb.4TA0815-391RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, Scott L, O’Hanlon DM, Burton JP, Francis KP, Tangney M, Reid G (2014) Microbiota of human breast tissue. Appl Environ Microbiol 80(10):3007–3014. https://doi.org/10.1128/AEM.00242-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G (2016) The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol 82(16):5039–5048. https://doi.org/10.1128/AEM.01235-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ (2014) Microbial dysbiosis is associated with human breast cancer. PLoS One 9(1):e83744. https://doi.org/10.1371/journal.pone.0083744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Dwyer DN, Dickson RP, Moore BB (2016) The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 196(12):4839–4847. https://doi.org/10.4049/jimmunol.1600279

    Article  CAS  PubMed  Google Scholar 

  35. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8(1):51. https://doi.org/10.1186/s13073-016-0307-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gold MC, McLaren JE, Reistetter JA, Smyk-Pearson S, Ladell K, Swarbrick GM, Yu YY, Hansen TH, Lund O, Nielsen M, Gerritsen B, Kesmir C, Miles JJ, Lewinsohn DA, Price DA, Lewinsohn DM (2014) MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J Exp Med 211(8):1601–1610. https://doi.org/10.1084/jem.20140507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coleman OI, Nunes T (2016) Role of the microbiota in colorectal cancer: updates on microbial associations and therapeutic implications. Biores Open Access 5(1):279–288. https://doi.org/10.1089/biores.2016.0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Booth JS, Salerno-Goncalves R, Blanchard TG, Patil SA, Kader HA, Safta AM, Morningstar LM, Czinn SJ, Greenwald BD, Sztein MB (2015) Mucosal-associated invariant T cells in the human gastric mucosa and blood: role in helicobacter pylori infection. Front Immunol 6:466. https://doi.org/10.3389/fimmu.2015.00466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rakoff-Nahoum S (2006) Why cancer and inflammation? Yale J Biol Med 79(3–4):123–130

    CAS  PubMed  Google Scholar 

  41. Kim ER, Chang DK (2014) Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol 20(29):9872–9881. https://doi.org/10.3748/wjg.v20.i29.9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shang FM, Liu HL (2018) Fusobacterium nucleatum and colorectal cancer: a review. World J Gastrointest Oncol 10(3):71–81. https://doi.org/10.4251/wjgo.v10.i3.71

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ishaq S, Nunn L (2015) Helicobacter pylori and gastric cancer: a state of the art review. Gastroenterol Hepatol Bed Bench 8(Suppl 1):S6–S14

    PubMed  PubMed Central  Google Scholar 

  44. Brawner KM, Morrow CD, Smith PD (2014) Gastric microbiome and gastric cancer. Cancer J 20(3):211–216. https://doi.org/10.1097/PPO.0000000000000043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S, Ramaker S, Xiao J, Radisky DC, Knutson KL, Kalari KR, Yao JZ, Baddour LM, Chia N, Degnim AC (2016) The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 6:30751. https://doi.org/10.1038/srep30751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bartosch B (2010) Hepatitis B and C viruses and hepatocellular carcinoma. Viruses 2(8):1504–1509. https://doi.org/10.3390/v2081504

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wan MLY, El-Nezami H (2018) Targeting gut microbiota in hepatocellular carcinoma: probiotics as a novel therapy. Hepatobiliary Surg Nutr 7(1):11–20. https://doi.org/10.21037/hbsn.2017.12.07

    Article  PubMed  PubMed Central  Google Scholar 

  48. Slichter CK, McDavid A, Miller HW, Finak G, Seymour BJ, McNevin JP, Diaz G, Czartoski JL, McElrath MJ, Gottardo R, Prlic M (2016) Distinct activation thresholds of human conventional and innate-like memory T cells. JCI Insight 1(8):e86292. https://doi.org/10.1172/jci.insight.86292

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ussher JE, Willberg CB, Klenerman P (2018) MAIT cells and viruses. Immunol Cell Biol 96(6):630–641. https://doi.org/10.1111/imcb.12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shey MS, Balfour A, Wilkinson KA, Meintjes G (2018) Contribution of APCs to mucosal-associated invariant T cell activation in infectious disease and cancer. Innate Immun 24(4):192–202. https://doi.org/10.1177/1753425918768695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339. https://doi.org/10.1136/gutjnl-2015-309990

    Article  PubMed  Google Scholar 

  52. Tastan C, Karhan E, Zhou W, Fleming E, Voigt AY, Yao X, Wang L, Horne M, Placek L, Kozhaya L, Oh J, Unutmaz D (2018) Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation. Mucosal Immunol 11(6):1591–1605. https://doi.org/10.1038/s41385-018-0072-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buttó LF, Haller D (2016) Dysbiosis in intestinal inflammation: cause or consequence. Int J Med Microbiol 306(5):302–309. https://doi.org/10.1016/j.ijmm.2016.02.010

    Article  PubMed  Google Scholar 

  54. Tominaga K, Yamagiwa S, Setsu T, Kimura N, Honda H, Kamimura H, Honda Y, Takamura M, Yokoyama J, Suzuki K, Wakai T, Terai S (2017) Possible involvement of mucosal-associated invariant T cells in the progression of inflammatory bowel diseases. Biomed Res 38(2):111–121. https://doi.org/10.2220/biomedres.38.111

    Article  CAS  PubMed  Google Scholar 

  55. Sundström P, Ahlmanner F, Akéus P, Sundquist M, Alsén S, Yrlid U, Börjesson L, Sjöling Å, Gustavsson B, Wong SB, Quiding-Järbrink M (2015) Human mucosa-associated invariant T cells accumulate in colon adenocarcinomas but produce reduced amounts of IFN-γ. J Immunol 195(7):3472–3481. https://doi.org/10.4049/jimmunol.1500258

    Article  CAS  PubMed  Google Scholar 

  56. Sundström P, Szeponik L, Ahlmanner F, Sundquist M, Wong JSB, Lindskog EB, Gustafsson B, Quiding-Järbrink M (2019) Tumor-infiltrating mucosal-associated invariant T (MAIT) cells retain expression of cytotoxic effector molecules. Oncotarget 10(29):2810–2823. https://doi.org/10.18632/oncotarget.26866

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ling L, Lin Y, Zheng W, Hong S, Tang X, Zhao P, Li M, Ni J, Li C, Wang L, Jiang Y (2016) Circulating and tumor-infiltrating mucosal associated invariant T (MAIT) cells in colorectal cancer patients. Sci Rep 6:20358. https://doi.org/10.1038/srep20358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zabijak L, Attencourt C, Guignant C, Chatelain D, Marcelo P, Marolleau JP, Treiner E (2015) Increased tumor infiltration by mucosal-associated invariant T cells correlates with poor survival in colorectal cancer patients. Cancer Immunol Immunother 64(12):1601–1608. https://doi.org/10.1007/s00262-015-1764-7

    Article  CAS  PubMed  Google Scholar 

  59. Won EJ, Ju JK, Cho YN, Jin HM, Park KJ, Kim TJ, Kwon YS, Kee HJ, Kim JC, Kee SJ, Park YW (2016) Clinical relevance of circulating mucosal-associated invariant T cell levels and their anti-cancer activity in patients with mucosal-associated cancer. Oncotarget 7(46):76274–76290. https://doi.org/10.18632/oncotarget.11187

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shaler CR, Tun-Abraham ME, Skaro AI, Khazaie K, Corbett AJ, Mele T, Hernandez-Alejandro R, Haeryfar SMM (2017) Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol Immunother 66(12):1563–1575. https://doi.org/10.1007/s00262-017-2050-7

    Article  CAS  PubMed  Google Scholar 

  61. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, Liu Z, Dong M, Hu X, Ouyang W, Peng J, Zhang Z (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169(7):1342–1356.e1316. https://doi.org/10.1016/j.cell.2017.05.035

    Article  CAS  PubMed  Google Scholar 

  62. Duan M, Goswami S, Shi JY, Wu LJ, Wang XY, Ma JQ, Zhang Z, Shi Y, Ma LJ, Zhang S, Xi RB, Cao Y, Zhou J, Fan J, Zhang XM, Gao Q (2019) Activated and exhausted MAIT cells foster disease progression and indicate poor outcome in hepatocellular carcinoma. Clin Cancer Res 25(11):3304–3316. https://doi.org/10.1158/1078-0432.CCR-18-3040

    Article  PubMed  Google Scholar 

  63. D’Souza C, Pediongco T, Wang H, Scheerlinck JY, Kostenko L, Esterbauer R, Stent AW, Eckle SBG, Meehan BS, Strugnell RA, Cao H, Liu L, Mak JYW, Lovrecz G, Lu L, Fairlie DP, Rossjohn J, McCluskey J, Every AL, Chen Z, Corbett AJ (2018) Mucosal-associated invariant T cells augment immunopathology and gastritis in chronic. J Immunol 200(5):1901–1916. https://doi.org/10.4049/jimmunol.1701512

    Article  CAS  PubMed  Google Scholar 

  64. Huang WC, Hsiao YC, Wu CC, Hsu YT, Chang CL (2019) Less circulating mucosal-associated invariant T cells in patients with cervical cancer. Taiwan J Obstet Gynecol 58(1):117–121. https://doi.org/10.1016/j.tjog.2018.11.022

    Article  PubMed  Google Scholar 

  65. Betts CB, Pennock ND, Caruso BP, Ruffell B, Borges VF, Schedin P (2018) Mucosal immunity in the female murine mammary gland. J Immunol 201(2):734–746. https://doi.org/10.4049/jimmunol.1800023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murugaiyan G, Saha B (2009) Protumor vs antitumor functions of IL-17. J Immunol 183(7):4169–4175. https://doi.org/10.4049/jimmunol.0901017

    Article  CAS  PubMed  Google Scholar 

  67. Eyerich S, Eyerich K, Cavani A, Schmidt-Weber C (2010) IL-17 and IL-22: siblings, not twins. Trends Immunol 31(9):354–361. https://doi.org/10.1016/j.it.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  68. Ebbing M, Bønaa KH, Nygård O, Arnesen E, Ueland PM, Nordrehaug JE, Rasmussen K, Njølstad I, Refsum H, Nilsen DW, Tverdal A, Meyer K, Vollset SE (2009) Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA 302(19):2119–2126. https://doi.org/10.1001/jama.2009.1622

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny E. Gumperz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zumwalde, N.A., Gumperz, J.E. (2020). Mucosal-Associated Invariant T Cells in Tumors of Epithelial Origin. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1224. Springer, Cham. https://doi.org/10.1007/978-3-030-35723-8_5

Download citation

Publish with us

Policies and ethics