Skip to main content
Log in

CD45RAFoxp3high regulatory T cells have a negative impact on the clinical outcome of head and neck squamous cell carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Although regulatory T cells (Tregs) are thought to play an important role in immune suppression, their clinical significance in head and neck squamous cell carcinoma (HNSCC) is unclear. A recent study reported Tregs could be divided into functional subsets based on the expression of CD45RA and Foxp3.

Method

The frequency of circulating Treg subsets was analyzed in patients with HNSCC and compared with the frequency in patients with benign tumors. The association of Treg subsets with the frequency of lymphocyte subsets, status of progression, clinical course, and prognosis were also examined.

Results

The frequency of CD4+Foxp3+ Tregs was comparable between HNSCC patients and age-matched benign tumor patients; however, CD45RAFoxp3high Tregs were significantly increased in HNSCC patients, in particular those with advanced stage tumors. The high frequency of CD45RAFoxp3high Tregs correlated with a poor prognosis and the low frequency of CD45RAFoxp3high Tregs before treatment showed a better clinical outcome, even in patients with advanced stage tumors. CD45RAFoxp3high Treg numbers were decreased after intensive treatments; however, Treg numbers recovered in the early stages of recurrent cases, even before the clinical manifestation.

Conclusion

CD45RAFoxp3high Tregs are associated with the clinical course of HNSCC and might be a new target for treatment and an early marker of tumor recurrence in HNSCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CDDP:

Cisplatin

CCRT:

Combined chemotherapy and radiotherapy

CFSE:

Carboxyfluorescein diacetate succinimidyl ester

CR:

Complete remission

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

HNSCC:

Head and neck squamous cell carcinoma

MDSCs:

Myeloid derived suppressor cells

PBMCs:

Peripheral blood mononuclear cells

RT:

Radiation therapy

Tregs:

Regulatory T cells

References

  1. Howell GM, Grandis JR (2005) Molecular mediators of metastasis in head and neck squamous cell carcinoma. Head Neck 27:710–717. doi:10.1002/hed.20222

    Article  PubMed  Google Scholar 

  2. Weed DT, Vella JL, Reis IM et al (2015) Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res 21:39–48. doi:10.1158/1078-0432.CCR-14-1711

    Article  CAS  PubMed  Google Scholar 

  3. Albers AE, Strauss L, Liao T, Hoffmann TK, Kaufmann AM (2010) T cell-tumor interaction directs the development of immunotherapies in head and neck cancer. Clin Dev Immunol 2010:236378. doi:10.1155/2010/236378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duray A, Demoulin S, Hubert P, Delvenne P, Saussez S (2010) Immune suppression in head and neck cancers: a review. Clin Dev Immunol. 2010:701657. doi:10.1155/2010/701657

    Article  PubMed  Google Scholar 

  5. Freiser ME, Serafini P, Weed DT (2013) The immune system and head and neck squamous cell carcinoma: from carcinogenesis to new therapeutic opportunities. Immunol Res 57:52–69. doi:10.1007/s12026-013-8462-3

    Article  CAS  PubMed  Google Scholar 

  6. Horinaka A, Sakurai D, Ihara F, Makita Y, Kunii N, Motohashi S, Nakayama T, Okamoto Y (2016) Invariant NKT cells are resistant to circulating CD15+ myeloid-derived suppressor cells in patients with head and neck cancer. Cancer Sci. 107:207–216. doi:10.1111/cas.12866

    Article  Google Scholar 

  7. Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139. doi:10.1016/bs.acr.2015.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  8. Takeuchi Y, Nishikawa H (2016) Roles of regulatory T cells in cancer immunity. Int Immunol 28:401–409. doi:10.1093/intimm/dxw025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burnet M (1957) Cancer; a biological approach. I. The processes of control. Br Med J 1:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  11. Fujiwara J, Sowa Y, Horinaka M, Koyama M, Wakada M, Miki T, Sakai T (2016) The anti-obesity drug orlistat promotes sensitivity to TRAIL by two different pathways in hormone-refractory prostate cancer cells. Int J Oncol 48:854. doi:10.3892/ijo.2015.3265

    Article  PubMed  Google Scholar 

  12. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. doi:10.1056/NEJMoa1507643

    Article  CAS  PubMed  Google Scholar 

  14. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135. doi:10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330. doi:10.1056/NEJMoa1412082

    Article  CAS  PubMed  Google Scholar 

  16. Ferris RL, Blumenschein G Jr, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867. doi:10.1056/NEJMoa1602252

    Article  PubMed  Google Scholar 

  17. Wing JB, Sakaguchi S (2014) Foxp3(+) T(reg) cells in humoral immunity. Int Immunol 26:61–69. doi:10.1093/intimm/dxt060

    Article  CAS  PubMed  Google Scholar 

  18. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138:105–115. doi:10.1111/imm.12036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alizadeh D, Larmonier N (2014) Chemotherapeutic targeting of cancer-induced immunosuppressive cells. Cancer Res 74:2663–2668. doi:10.1158/0008-5472.CAN-14-0301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T (2005) CD4+ CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep 14:1269–1273

    CAS  PubMed  Google Scholar 

  21. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, Omata H, Fujii H (2006) CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 55:1064–1071. doi:10.1007/s00262-005-0092-8

    Article  CAS  PubMed  Google Scholar 

  22. Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543. doi:10.1073/pnas.0509182102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alhamarneh O, Agada F, Madden L, Stafford N, Greenman J (2011) Serum IL10 and circulating CD4(+) CD25(high) regulatory T cell numbers as predictors of clinical outcome and survival in patients with head and neck squamous cell carcinoma. Head Neck 33:415–423. doi:10.1002/hed.21464

    PubMed  Google Scholar 

  24. Badoual C, Hans S, Rodriguez J et al (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472. doi:10.1158/1078-0432.CCR-05-1886

    Article  CAS  PubMed  Google Scholar 

  25. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192. doi:10.1200/JCO.2008.18.7229

    Article  PubMed  Google Scholar 

  26. Alvaro T, Lejeune M, Salvado MT et al (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11:1467–1473. doi:10.1158/1078-0432.CCR-04-1869

    Article  PubMed  Google Scholar 

  27. Miyara M, Yoshioka Y, Kitoh A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911. doi:10.1016/j.immuni.2009.03.019

    Article  CAS  PubMed  Google Scholar 

  28. Lin YC, Mahalingam J, Chiang JM et al (2013) Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer. Inter J Cancer 132:1341–1350. doi:10.1002/ijc.27784

    Article  CAS  Google Scholar 

  29. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275. doi:10.1126/science.1160062

    Article  CAS  PubMed  Google Scholar 

  30. Yamaguchi T, Kishi A, Osaki M, Morikawa H, Prieto-Martin P, Wing K, Saito T, Sakaguchi S (2013) Construction of self-recognizing regulatory T cells from conventional T cells by controlling CTLA-4 and IL-2 expression. Proc Natl Acad Sci USA 110:E2116–E2125. doi:10.1073/pnas.1307185110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S (2008) Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 105:10113–10118. doi:10.1073/pnas.0711106105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jafarzadeh A, Fooladseresht H, Minaee K, Bazrafshani MR, Khosravimashizi A, Nemati M, Mohammadizadeh M, Mohammadi MM, Ghaderi A (2015) Higher circulating levels of chemokine CCL22 in patients with breast cancer: evaluation of the influences of tumor stage and chemokine gene polymorphism. Tumour Biol 36:1163–1171. doi:10.1007/s13277-014-2739-6

    Article  CAS  PubMed  Google Scholar 

  33. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767. doi:10.1002/ijc.25429

    CAS  PubMed  Google Scholar 

  34. Fujimura T, Kambayashi Y, Aiba S (2012) Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Oncoimmunology 1:1433–1434. doi:10.4161/onci.21176

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou G, Levitsky HI (2007) Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunology 178:2155–2162

    Article  CAS  Google Scholar 

  36. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4+ CD25 naive T cells to CD4+ CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886. doi:10.1084/jem.20030152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu VC, Wong LY, Jang T et al (2007) Tumor evasion of the immune system by converting CD4+ CD25 T cells into CD4+ CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunology 178:2883–2892

    Article  CAS  Google Scholar 

  38. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR (2013) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45. doi:10.1111/j.1365-2249.2012.04657.x

    Article  CAS  PubMed  Google Scholar 

  39. Jie HB, Gildener-Leapman N, Li J, Srivastava RM, Gibson SP, Whiteside TL, Ferris RL (2013) Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer 109:2629–2635. doi:10.1038/bjc.2013.645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maeda Y, Nishikawa H, Sugiyama D et al (2014) Detection of self-reactive CD8(+) T cells with an anergic phenotype in healthy individuals. Science 346:1536–1540. doi:10.1126/science.aaa1292

    Article  CAS  PubMed  Google Scholar 

  41. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500. doi:10.1038/nri2785

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a Grants-in-Aid for Scientific Research from MEXT KAKENHI (Ministry of Education, Culture, Sports, Science and Technology) Grant number 15K10799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Okamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihara, F., Sakurai, D., Horinaka, A. et al. CD45RAFoxp3high regulatory T cells have a negative impact on the clinical outcome of head and neck squamous cell carcinoma. Cancer Immunol Immunother 66, 1275–1285 (2017). https://doi.org/10.1007/s00262-017-2021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2021-z

Keywords

Navigation