Skip to main content
Log in

CAR-T Cell Therapy: the Efficacy and Toxicity Balance

  • CART and immunotherapy (M Ruella and P Hanley, Section Editors)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy that has resulted in tremendous progress in the treatment of patients with B cell malignancies. However, the remarkable efficacy of therapy is not without significant safety concerns. Herein, we will review the unique and potentially life-threatening toxicities associated with CAR-T cell therapy and their association with treatment efficacy.

Recent Findings

Currently, CAR-T cell therapy is approved for the treatment of B cell relapsed or refractory leukemia and lymphoma, and most recently, multiple myeloma (MM). In these different diseases, it has led to excellent complete and overall response rates depending on the patient population and therapy. Despite promising efficacy, CAR-T cell therapy is associated with significant side effects; the two most notable toxicities are cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). The treatment of CAR-T-induced toxicity is supportive; however, as higher-grade adverse events occur, toxicity-directed therapy with tocilizumab, an IL-6 receptor antibody, and steroids is standard practice. Overall, a careful risk–benefit balance exists between the efficacy and toxicities of therapies. The challenge lies in the underlying pathophysiology of CAR-T-related toxicity which relies upon the activation of CAR-T cells.

Summary

Some degree of toxicity is expected to achieve an effective response to therapy, and certain aspects of treatment are also associated with toxicity. As progress is made in the investigation and approval of new CARs, novel toxicity-directed therapies and toxicity-limited constructs will be the focus of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

This review article does not present any original unpublished data. All data presented is associated with the corresponding reference.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Almasbak H, Aarvak T, Vemuri MC. CAR T cell therapy: a game changer in cancer treatment. J Immunol Res. 2016;2016:5474602. https://doi.org/10.1155/2016/5474602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69. https://doi.org/10.1038/s41408-021-00459-7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Guedan S, Calderon H, Posey AD Jr, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev. 2019;12:145–56. https://doi.org/10.1016/j.omtm.2018.12.009.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11:132. https://doi.org/10.1186/s13045-018-0677-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19:185–99. https://doi.org/10.1038/s41573-019-0051-2.

    Article  CAS  PubMed  Google Scholar 

  6. Brudno JN, et al. Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol. 2016;34:1112–21. https://doi.org/10.1200/JCO.2015.64.5929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinkove R, George P, Dasyam N, McLellan AD. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunology 8, e1049. https://doi.org/10.1002/cti2.1049 (2019).

  8. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5. https://doi.org/10.1126/science.aar6711.

    Article  CAS  PubMed  Google Scholar 

  9. Finney HM, Lawson AD, Bebbington CR, Weir AN. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol. 1998;161:2791–7.

    Article  CAS  PubMed  Google Scholar 

  10. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol. 2002;20:70–5. https://doi.org/10.1038/nbt0102-70.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol. 2009;183:5563–74. https://doi.org/10.4049/jimmunol.0900447.

    Article  CAS  PubMed  Google Scholar 

  12. ••Fowler, N. H. et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat Med 28, 325-332. https://doi.org/10.1038/s41591-021-01622-0. Recent trial leading to the approval of Tisagenlecleucel for FL.

  13. Schuster SJ, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380:45–56. https://doi.org/10.1056/NEJMoa1804980.

    Article  CAS  PubMed  Google Scholar 

  14. Neelapu SS, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang M, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382:1331–42. https://doi.org/10.1056/NEJMoa1914347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. ••Jacobson, C. A. et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol 23, 91-103. Recent clinical trial forming the basis of approval of axi-cel for the treatment of indolent lymphomas.

  17. Berdeja JG, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398:314–24. https://doi.org/10.1016/S0140-6736(21)00933-8.

    Article  CAS  PubMed  Google Scholar 

  18. Abramson JS, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396:839–52. https://doi.org/10.1016/S0140-6736(20)31366-0.

    Article  PubMed  Google Scholar 

  19. Maude SL, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48. https://doi.org/10.1056/NEJMoa1709866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shah BD, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet. 2021;398:491–502. https://doi.org/10.1016/S0140-6736(21)01222-8.

    Article  CAS  PubMed  Google Scholar 

  21. Munshi NC, et al. Idecabtagene Vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384:705–16. https://doi.org/10.1056/NEJMoa2024850.

    Article  CAS  PubMed  Google Scholar 

  22. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33. https://doi.org/10.1056/NEJMoa1103849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. ••Lee, D. W. et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 25, 625-638. https://doi.org/10.1016/j.bbmt.2018.12.758. Guidelines by the American Society for Transplantation and Cellular Therapy (ASTCT) which have established a consensus grading system (Grades 1–4) for both CRS and ICANS.

  24. Yakoub-Agha I, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105:297–316. https://doi.org/10.3324/haematol.2019.229781.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sotillo E, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95. https://doi.org/10.1158/2159-8290.CD-15-1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Castellarin, M. et al. A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight 5https://doi.org/10.1172/jci.insight.136012 (2020).

  27. Ghorashian S, et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med. 2019;25:1408–14. https://doi.org/10.1038/s41591-019-0549-5.

    Article  CAS  PubMed  Google Scholar 

  28. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8:1219–26. https://doi.org/10.1158/2159-8290.CD-18-0442.

    Article  CAS  PubMed  Google Scholar 

  29. Ahmadzadeh M, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114:1537–44. https://doi.org/10.1182/blood-2008-12-195792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baitsch L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest. 2011;121:2350–60. https://doi.org/10.1172/JCI46102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Long AH, et al. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21:581–90. https://doi.org/10.1038/nm.3838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gargett T, et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol Ther. 2016;24:1135–49. https://doi.org/10.1038/mt.2016.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heczey A, et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther. 2017;25:2214–24. https://doi.org/10.1016/j.ymthe.2017.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barber DL, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7. https://doi.org/10.1038/nature04444.

    Article  CAS  PubMed  Google Scholar 

  35. Hay KA, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130:2295–306. https://doi.org/10.1182/blood-2017-06-793141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pennisi M, et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management. Blood Adv. 2020;4:676–86. https://doi.org/10.1182/bloodadvances.2019000952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neelapu SS, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15:47–62. https://doi.org/10.1038/nrclinonc.2017.148.

    Article  CAS  PubMed  Google Scholar 

  38. Park JH, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schuster SJ, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54. https://doi.org/10.1056/NEJMoa1708566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Murthy H, Iqbal M, Chavez JC, Kharfan-Dabaja MA. Cytokine release syndrome: current perspectives. Immunotargets Ther. 2019;8:43–52. https://doi.org/10.2147/ITT.S202015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sterner RM, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133:697–709. https://doi.org/10.1182/blood-2018-10-881722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20:119–22. https://doi.org/10.1097/PPO.0000000000000035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gabay C, et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet. 2013;381:1541–50. https://doi.org/10.1016/S0140-6736(13)60250-0.

    Article  CAS  PubMed  Google Scholar 

  44. Bijlsma JWJ, et al. Early rheumatoid arthritis treated with tocilizumab, methotrexate, or their combination (U-Act-Early): a multicentre, randomised, double-blind, double-dummy, strategy trial. Lancet. 2016;388:343–55. https://doi.org/10.1016/S0140-6736(16)30363-4.

    Article  CAS  PubMed  Google Scholar 

  45. Le RQ, et al. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23:943–7. https://doi.org/10.1634/theoncologist.2018-0028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li M, et al. The differential effects of tumor burdens on predicting the net benefits of ssCART-19 cell treatment on r/r B-ALL patients. Sci Rep. 2022;12:378. https://doi.org/10.1038/s41598-021-04296-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maude SL, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17. https://doi.org/10.1056/NEJMoa1407222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Teachey DT, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–79. https://doi.org/10.1158/2159-8290.CD-16-0040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mahadeo KM, et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat Rev Clin Oncol. 2019;16:45–63. https://doi.org/10.1038/s41571-018-0075-2.

    Article  CAS  PubMed  Google Scholar 

  50. Rubin DB, et al. Clinical predictors of neurotoxicity after chimeric antigen receptor T-cell therapy. JAMA Neurol. 2020;77:1536–42. https://doi.org/10.1001/jamaneurol.2020.2703.

    Article  PubMed  Google Scholar 

  51. Curran KJ, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134:2361–8. https://doi.org/10.1182/blood.2019001641.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Santomasso BD, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8:958–71. https://doi.org/10.1158/2159-8290.CD-17-1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gust J, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7:1404–19. https://doi.org/10.1158/2159-8290.CD-17-0698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grant SJ, et al. Clinical presentation, risk factors, and outcomes of immune effector cell-associated neurotoxicity syndrome following chimeric antigen receptor T cell therapy: a systematic review. Transplant Cell Ther. 2022;28:294–302. https://doi.org/10.1016/j.jtct.2022.03.006.

    Article  CAS  PubMed  Google Scholar 

  55. Schuster SJ, et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial. Blood Adv. 2020;4:1432–9. https://doi.org/10.1182/bloodadvances.2019001304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Strati P, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137:3272–6. https://doi.org/10.1182/blood.2020008865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nellan A, et al. Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood. 2018;132:662–6. https://doi.org/10.1182/blood-2018-05-846428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5:202–7. https://doi.org/10.1200/JCO.1987.5.2.202.

    Article  CAS  PubMed  Google Scholar 

  59. Labar B, et al. Dexamethasone compared to prednisolone for adults with acute lymphoblastic leukemia or lymphoblastic lymphoma: final results of the ALL-4 randomized, phase III trial of the EORTC Leukemia Group. Haematologica. 2010;95:1489–95. https://doi.org/10.3324/haematol.2009.018580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. •Gardner, R. A. et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood 134, 2149-2158. https://doi.org/10.1182/blood.2019001463. Study which reported that early intervention with steroids or tocilizumab may reduce the potential development for severe toxicity and have minimal impact on treatment efficacy.

  61. Chen F, et al. Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. J Immunol Methods. 2016;434:1–8. https://doi.org/10.1016/j.jim.2016.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Titov A, et al. The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death Dis. 2018;9:897. https://doi.org/10.1038/s41419-018-0918-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang L, et al. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy. Exp Hematol Oncol. 2021;10:16. https://doi.org/10.1186/s40164-021-00209-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Strati P, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 2020;4:3123–7. https://doi.org/10.1182/bloodadvances.2020002328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shi Y, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 2006;16:126–33. https://doi.org/10.1038/sj.cr.7310017.

    Article  CAS  PubMed  Google Scholar 

  66. Yi Y, et al. CRISPR-edited CART with GM-CSF knockout and auto secretion of IL6 and IL1 blockers in patients with hematologic malignancy. Cell Discov. 2021;7:27. https://doi.org/10.1038/s41421-021-00255-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kenderian SS, et al. ZUMA-19: A phase 1/2 multicenter study of lenzilumab use with axicabtagene ciloleucel (Axi-Cel) in patients (Pts) with relapsed or refractory large B cell lymphoma (R/R LBCL). Blood. 2020;136:6–7. https://doi.org/10.1182/blood-2020-135988.

    Article  Google Scholar 

  68. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1:36. https://doi.org/10.1186/2162-3619-1-36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Engel P, et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity. 1995;3:39–50. https://doi.org/10.1016/1074-7613(95)90157-4.

    Article  CAS  PubMed  Google Scholar 

  70. Maude SL, et al. Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. J Clin Oncol. 2016;34:3011–3011. https://doi.org/10.1200/JCO.2016.34.15_suppl.3011.

    Article  Google Scholar 

  71. Anagnostou T, Riaz IB, Hashmi SK, Murad MH, Kenderian SS. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. Lancet Haematol. 2020;7:e816–26. https://doi.org/10.1016/S2352-3026(20)30277-5.

    Article  PubMed  Google Scholar 

  72. Locke FL, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20:31–42. https://doi.org/10.1016/S1470-2045(18)30864-7.

    Article  CAS  PubMed  Google Scholar 

  73. Nastoupil LJ, et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J Clin Oncol. 2020;38:3119–28. https://doi.org/10.1200/JCO.19.02104.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jacobson CA, et al. Axicabtagene ciloleucel in the non-trial setting: outcomes and correlates of response, resistance, and toxicity. J Clin Oncol. 2020;38:3095–106. https://doi.org/10.1200/JCO.19.02103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pasquini MC, et al. Post-marketing use outcomes of an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, Axicabtagene ciloleucel (axi-cel), for the treatment of large B cell lymphoma (LBCL) in the United States (US). Blood. 2019;134:764–764. https://doi.org/10.1182/blood-2019-124750.

    Article  Google Scholar 

  76. Locke FL, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2022;386:640–54. https://doi.org/10.1056/NEJMoa2116133.

    Article  CAS  PubMed  Google Scholar 

  77. Bishop MR, et al. Second-line Tisagenlecleucel or standard care in aggressive B-cell lymphoma. N Engl J Med. 2022;386:629–39. https://doi.org/10.1056/NEJMoa2116596.

    Article  CAS  PubMed  Google Scholar 

  78. Kamdar M, et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet. 2022;399:2294–308. https://doi.org/10.1016/S0140-6736(22)00662-6.

    Article  CAS  PubMed  Google Scholar 

  79. Perales, M. A. et al. Role of CD19 chimeric antigen receptor T cells in second-line large B cell lymphoma: lessons from phase 3 trials. An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Transplant Cell Ther 28, 546–559. https://doi.org/10.1016/j.jtct.2022.06.019 (2022).

  80. •Iacoboni, G. et al. Real-world evidence of brexucabtagene autoleucel for the treatment of relapsed or refractory mantle cell lymphoma. Blood Adv. https://doi.org/10.1182/bloodadvances.2021006922Recently published real-world analysis of brexi-cel in patients with MCL which serves to validate clinical trial data from ZUMA-2.

  81. Shah N, Chari A, Scott E, Mezzi K, Usmani SZ. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 2020;34:985–1005. https://doi.org/10.1038/s41375-020-0734-z.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sanchez E, et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol. 2012;158:727–38. https://doi.org/10.1111/j.1365-2141.2012.09241.x.

    Article  CAS  PubMed  Google Scholar 

  83. Ghilardi G, et al. Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas. Ann Oncol. 2022;33:916–28. https://doi.org/10.1016/j.annonc.2022.05.521.

    Article  CAS  PubMed  Google Scholar 

  84. Yoon, D. H., Osborn, M. J., Tolar, J. & Kim, C. J. Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-in CAR-T. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020340 (2018).

  85. Ceschi A, Noseda R, Palin K, Verhamme K. Immune checkpoint inhibitor-related cytokine release syndrome: analysis of WHO global pharmacovigilance database. Front Pharmacol. 2020;11:557. https://doi.org/10.3389/fphar.2020.00557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yeku, O. O., Purdon, T., Spriggs, D. R. & Brentjens, R. J. Chimeric antigen receptor (CAR) T cells genetically engineered to deliver IL-12 to the tumor microenvironment in ovarian cancer. Journal of Clinical Oncology 35.https://doi.org/10.1200/Jco.2017.35.15_Suppl.3050 (2017).

  87. Yeku, O. O., Purdon, T., Spriggs, D. R. & Brentjens, R. J. Interleukin-12 armored chimeric antigen receptor (CAR) T cells for heterogeneous antigen-expressing ovarian cancer. Journal of Clinical Oncology 36https://doi.org/10.1200/Jco.2018.36.5_Suppl.12 (2018).

  88. Koneru, M., Purdon, T. J., Spriggs, D., Koneru, S. & Brentjens, R. J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4, doi:ARTN e994446 https://doi.org/10.4161/2162402X.2014.994446 (2015).

  89. Choi BD, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer. 2019;7:304. https://doi.org/10.1186/s40425-019-0806-7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hoyos V, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010;24:1160–70. https://doi.org/10.1038/leu.2010.75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Budde, L. E. et al. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS One 8, e82742. https://doi.org/10.1371/journal.pone.0082742 (2013).

  92. Wang X, et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011;118:1255–63. https://doi.org/10.1182/blood-2011-02-337360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tasian, S. K. et al. Optimized depletion of chimeric antigen receptor T-cells in murine xenograft models of human acute myeloid leukemia. Blood. https://doi.org/10.1182/blood-2016-08-736041

  94. Diaconu I, et al. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther. 2017;25:580–92. https://doi.org/10.1016/j.ymthe.2017.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Stroncek DF, et al. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy. 2016;18:893–901. https://doi.org/10.1016/j.jcyt.2016.04.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ruella M, et al. Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov. 2017;7:1154–67. https://doi.org/10.1158/2159-8290.CD-16-0850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giavridis T, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731–8. https://doi.org/10.1038/s41591-018-0041-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Teachey DT, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–79. https://doi.org/10.1158/2159-8290.CD-16-0040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gauthier J, et al. Feasibility and efficacy of CD19-targeted CAR-T cells with concurrent ibrutinib for CLL after ibrutinib failure. Blood. 2020;135:1650–60. https://doi.org/10.1182/blood.2019002936.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. L. C, S. S.K; wrote the initial manuscript: E. L. S contributed to the writing and editing of the final manuscript. All authors approved the submitted version.

Corresponding author

Correspondence to Saad S. Kenderian.

Ethics declarations

Conflict of Interest

SSK is inventor on patents in the CART cell field that are licensed to Novartis (through an agreement between Mayo Clinic, University of Pennsylvania, and Novartis), Humanigen (through Mayo Clinic), Mettaforge (through Mayo Clinic), MustangBio (through Mayo Clinic), and Sendero (through Mayo Clinic). SSK has received funding from Novartis, Kite/Gilead, Juno/BMS, Lentigen, Humanigen, Tolero, Morphosys, Sunesis, and Viracta, and LeahLabs. SSK has participated in scientific advisory board meetings with Kite/Gilead, Novartis, BMS, CapstanBio, Luminary therapeutics, and Humanigen. SSK has participated in DSMB meetings with Humanigen. SSK has participated in consulting activities with Novartis, Torque, CapstanBio, Luminary therapeutics, and Calibr. SSK hold equity in Life Engine, Inc. and Leahlabs. KLC and ELS have no conflicts to report.

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on CART and Immunotherapy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chohan, K.L., Siegler, E.L. & Kenderian, S.S. CAR-T Cell Therapy: the Efficacy and Toxicity Balance. Curr Hematol Malig Rep 18, 9–18 (2023). https://doi.org/10.1007/s11899-023-00687-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-023-00687-7

Keywords

Navigation