Skip to main content

Advertisement

Log in

STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Therapeutic vaccines to induce anti-tumor CD8 T cells have been used in clinical trials for advanced melanoma patients, but the clinical response rate and overall survival time have not improved much. We believe that these dismal outcomes are caused by inadequate number of antigen-specific CD8 T cells generated by most vaccines. In contrast, huge CD8 T cell responses readily occur during acute viral infections. High levels of type-I interferon (IFN-I) are produced during these infections, and this cytokine not only exhibits anti-viral activity but also promotes CD8 T cell responses. The studies described here were performed to determine whether promoting the production of IFN-I could enhance the potency of a peptide vaccine. We report that cyclic diguanylate monophosphate (c-di-GMP), which activates the stimulator of interferon genes, potentiated the immunogenicity and anti-tumor effects of a peptide vaccine against mouse B16 melanoma. The synergistic effects of c-di-GMP required co-administration of costimulatory anti-CD40 antibody, the adjuvant poly-IC, and were mediated in part by IFN-I. These findings demonstrate that peptides representing CD8 T cell epitopes can be effective inducers of large CD8 T cell responses in vaccination strategies that mimic acute viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACT:

Adoptive cell therapy

APC:

Antigen-presenting cell

Bt:

Boost

c-di-GMP:

Cyclic diguanylate monophosphate

DC:

Dendritic cell

ELISA:

Enzyme-linked immune assay

EliSpot:

Enzyme-linked immunospot

IFNαβR:

Interferon alpha–beta receptor

IFN-I:

Type-I interferon

IFNγ:

Interferon gamma

i.v.:

Intravenous

MDA5:

Melanoma differentiation-associated protein 5

Ova:

Ovalbumin

Pam:

Palmitic acid

Poly-IC:

Polyinosinic-polycytidylic acid

Pr:

Prime

PRR:

Pattern recognition receptor

STING:

Stimulator of interferon genes

TLR3:

Toll-like receptor 3

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64:252–271

    Article  PubMed  Google Scholar 

  3. Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schwartzentruber DJ, Lawson DH, Richards JM et al (2011) gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 364:2119–2127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Smith JW 2nd, Walker EB, Fox BA et al (2003) Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J Clin Oncol 21:1562–1573

    Article  CAS  PubMed  Google Scholar 

  6. Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunological Rev 211:81–92

    Article  CAS  Google Scholar 

  7. Horkheimer I, Quigley M, Zhu J, Huang X, Chao NJ, Yang Y (2009) Induction of type I IFN is required for overcoming tumor-specific T-cell tolerance after stem cell transplantation. Blood 113:5330–5339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Fuertes MB, Woo SR, Burnett B, Fu YX, Gajewski TF (2013) Type I interferon response and innate immune sensing of cancer. Trends Immunol 34:67–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9:683–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Coit DG, Andtbacka R, Anker CJ et al (2013) Melanoma, version 2.2013: featured updates to the NCCN guidelines. J Natl Compr Canc Netw 11:395–407

    CAS  PubMed  Google Scholar 

  11. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Parvatiyar K, Zhang Z, Teles RM et al (2012) The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat Immunol 13:1155–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Karaolis DK, Means TK, Yang D et al (2007) Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol 178:2171–2181

    Article  CAS  PubMed  Google Scholar 

  14. McWhirter SM, Barbalat R, Monroe KM et al (2009) A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J Exp Med 206:1899–1911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Shu C, Yi G, Watts T, Kao CC, Li P (2012) Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol 19:722–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Abe T, Barber GN (2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol 88:5328–5341

    Article  PubMed Central  PubMed  Google Scholar 

  17. Buteau C, Markovic SN, Celis E (2002) Challenges in the development of effective peptide vaccines for cancer. Mayo Clin Proc 77:339–349

    Article  CAS  PubMed  Google Scholar 

  18. Cho HI, Celis E (2009) Optimized peptide vaccines eliciting extensive CD8 T-cell responses with therapeutic antitumor effects. Cancer Res 69:9012–9019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Barrios K, Celis E (2012) TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunol Immunother 61:1307–1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Cho HI, Reyes-Vargas E, Delgado JC, Celis E (2012) A potent vaccination strategy that circumvents lymphodepletion for effective antitumor adoptive T-cell therapy. Cancer Res 72:1986–1995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cho HI, Barrios K, Lee YR, Linowski AK, Celis E (2013) BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol Immunother 62:787–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921

    Article  CAS  PubMed  Google Scholar 

  23. Overwijk WW, Theoret MR, Finkelstein SE et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198:569–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cho HI, Lee YR, Celis E (2011) Interferon gamma limits the effectiveness of melanoma peptide vaccines. Blood 117:135–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Fortier MH, Caron E, Hardy MP, Voisin G, Lemieux S, Perreault C, Thibault P (2008) The MHC class I peptide repertoire is molded by the transcriptome. J Exp Med 205:595–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Jedema I, van der Werff NM, Barge RM, Willemze R, Falkenburg JH (2004) New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 103:2677–2682

    Article  CAS  PubMed  Google Scholar 

  27. Liu L, Chahroudi A, Silvestri G et al (2002) Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat Med 8:185–189

    Article  CAS  PubMed  Google Scholar 

  28. Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, Perraud AL, Cambier JC, Lenz LL (2011) MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J Immunol 187:2595–2601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Becker JC, Andersen MH, Hofmeister-Muller V et al (2012) Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma. Cancer Immunol Immunother 61:2091–2103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Dangoor A, Lorigan P, Keilholz U et al (2010) Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol Immunother 59:863–873

    Article  CAS  PubMed  Google Scholar 

  31. Hinrichs CS, Rosenberg SA (2014) Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunological Rev 257:56–71

    Article  CAS  Google Scholar 

  32. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF (2005) Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J Immunol 174:4465–4469

    Article  CAS  PubMed  Google Scholar 

  33. Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, van der Burg SH, Melief CJ (2002) Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol. 169:350–358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Cancer Institute of the National Institutes of Health, R01CA136828 and R01CA157303, and by start-up funds from Georgia Regents University Cancer Center and the Georgia Research Alliance (GRA). We thank Ms. Diane Addis for the valuable technical expertise provided to this project and the GRU Cancer Center Flow Cytometry Core for services provided.

Conflict of interest

Esteban Celis has filed patent applications based on the use of synthetic peptides and poly-IC combinatorial vaccines. The rights of the patent applications have been transferred to the Moffitt Cancer Center (Tampa, FL). Zili Wang declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Celis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Celis, E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol Immunother 64, 1057–1066 (2015). https://doi.org/10.1007/s00262-015-1713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1713-5

Keywords

Navigation