Skip to main content

Advertisement

Log in

A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Chimeric antigen receptors (CARs), which combine an antibody-derived binding domain (single chain fragment variable) with T-cell-activating signaling domains, have become a promising tool in the adoptive cellular therapy of cancer. Retro- and lenti-viral transductions are currently the standard methods to equip T cells with a CAR; permanent CAR expression, however, harbors several risks like uncontrolled auto-reactivity. Modification of T cells by electroporation with CAR-encoding RNA to achieve transient expression likely circumvents these difficulties. We here present a GMP-compliant protocol to activate and expand T cells for clinical application. The protocol is optimized in particular to produce CAR-modified T cells in clinically sufficient numbers under full GMP-compliance from late-stage cancer patients. This protocol allows the generation of 6.7 × 108 CAR-expressing T cells from one patient leukapheresis. The CAR-engineered T cells produced pro-inflammatory cytokines after stimulation with antigen-bearing tumor cells and lysed tumor cells in an antigen-specific manner. This functional capacity was maintained after cryopreservation. Taken together, we provide a clinically applicable protocol to transiently engineer sufficient numbers of antigen-specific patient T cells for use in adoptive cell therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6(5):383–393

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Biagi E, Marin V, Giordano Attianese GM, Dander E, D‘Amico G, Biondi A (2007) Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica 92(3):381–388

    Article  PubMed  Google Scholar 

  3. Abken H, Hombach A, Heuser C, Kronfeld K, Seliger B (2002) Tuning tumor-specific T-cell activation: a matter of costimulation? Trends Immunol 23(5):240–245

    Article  PubMed  CAS  Google Scholar 

  4. Eshhar Z (2010) Adoptive cancer immunotherapy using genetically engineered designer T-cells: first steps into the clinic. Curr Opin Mol Ther 12(1):55–63

    PubMed  CAS  Google Scholar 

  5. Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C, Seliger B, Abken H (2001) Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol 167(11):6123–6131

    Article  PubMed  CAS  Google Scholar 

  6. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, Chen CC, Yang JC, Rosenberg SA, Hwu P (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12(20 Pt 1):6106–6115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Xue S, Gillmore R, Downs A, Tsallios A, Holler A, Gao L, Wong V, Morris E, Stauss HJ (2005) Exploiting T cell receptor genes for cancer immunotherapy. Clin Exp Immunol 139(2):167–172

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Cheadle EJ, Sheard V, Hombach AA, Chmielewski M, Riet T, Berrevoets C, Schooten E, Lamers C, Abken H, Debets R, Gilham DE (2012) Chimeric antigen receptors for T-cell based therapy. Methods Mol Biol 907:645–666

    Article  PubMed  CAS  Google Scholar 

  9. Lamers CH, Willemsen R, van Elzakker P, van Steenbergen-Langeveld S, Broertjes M, Oosterwijk-Wakka J, Oosterwijk E, Sleijfer S, Debets R, Gratama JW (2011) Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells. Blood 117(1):72–82

    Article  PubMed  CAS  Google Scholar 

  10. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24(13):e20–e22

    Article  PubMed  Google Scholar 

  11. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kampgen E, Schuler G, Abken H, Schaft N, Dorrie J (2009) Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther 16(5):596–604

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Almasbak H, Rian E, Hoel HJ, Pule M, Walchli S, Kvalheim G, Gaudernack G, Rasmussen AM (2011) Transiently redirected T cells for adoptive transfer. Cytotherapy 13(5):629–640

    Article  PubMed  CAS  Google Scholar 

  15. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, Carroll RG, June CH, Grupp SA (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Riet T, Holzinger A, Dorrie J, Schaft N, Schuler G, Abken H (2013) Nonviral RNA transfection to transiently modify T cells with chimeric antigen receptors for adoptive therapy. Methods Mol Biol 969:187–201

    Article  PubMed  CAS  Google Scholar 

  17. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM, Kalos M, June CH (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120

    Article  PubMed  CAS  Google Scholar 

  18. Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1(1):26–31

    Article  CAS  PubMed Central  Google Scholar 

  19. Kohn DB, Dotti G, Brentjens R, Savoldo B, Jensen M, Cooper LJ, June CH, Rosenberg S, Sadelain M, Heslop HE (2011) CARs on track in the clinic. Mol Ther 19(3):432–438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola FM, Sherry R, Leitman SF, Rosenberg SA (2001) Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24(4):363–373

    Article  PubMed  CAS  Google Scholar 

  21. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99(25):16168–16173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Erdmann M, Dorrie J, Schaft N, Strasser E, Hendelmeier M, Kampgen E, Schuler G, Schuler-Thurner B (2007) Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection. J Immunother 30(6):663–674

    Article  PubMed  CAS  Google Scholar 

  23. Berger TG, Strasser E, Smith R, Carste C, Schuler-Thurner B, Kaempgen E, Schuler G (2005) Efficient elutriation of monocytes within a closed system (Elutra) for clinical-scale generation of dendritic cells. J Immunol Methods 298(1–2):61–72

    Article  PubMed  CAS  Google Scholar 

  24. Riddell SR, Greenberg PD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128(2):189–201

    Article  PubMed  CAS  Google Scholar 

  25. Schaft N, Dorrie J, Muller I, Beck V, Baumann S, Schunder T, Kampgen E, Schuler G (2006) A new way to generate cytolytic tumor-specific T cells: electroporation of RNA coding for a T cell receptor into T lymphocytes. Cancer Immunol Immunother 55(9):1132–1141

    Article  PubMed  CAS  Google Scholar 

  26. Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM, Kershaw MH, Smyth MJ, Darcy PK (2002) Single-chain antigen recognition receptors that costimulate potent rejection of established experimental tumors. Blood 100(9):3155–3163

    Article  PubMed  CAS  Google Scholar 

  27. Bonehill A, Heirman C, Tuyaerts S, Michiels A, Breckpot K, Brasseur F, Zhang Y, Van Der BP, Thielemans K (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172(11):6649–6657

    Article  PubMed  CAS  Google Scholar 

  28. Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M, Greenberg PD (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110(1):201–210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Rasmussen AM, Borelli G, Hoel HJ, Lislerud K, Gaudernack G, Kvalheim G, Aarvak T (2010) Ex vivo expansion protocol for human tumor specific T cells for adoptive T cell therapy. J Immunol Methods 355(1–2):52–60

    Article  PubMed  CAS  Google Scholar 

  30. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122(6):863–871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Barrett DM, Singh N, Porter DL, Grupp SA, June CH (2014) Chimeric antigen receptor therapy for cancer. Annu Rev Med 65:333–347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39(1):49–60

    Article  PubMed  CAS  Google Scholar 

  34. Hombach A, Hombach AA, Abken H (2010) Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther 17(10):1206–1213

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Katrin Birkholz, Christian Hofmann, and Stefanie Hoyer for excellent practical advisory and interesting discussions; Verena Wellner, Stefanie Baumann, and Ina Müller for excellent technical assistance; Stefanie Gross for evaluation of flow cytometry data and providing antibodies; Kris Thielemans for providing the pGEM4Z RNA-production vector; Saskia Santegroets and Tanja de Gruijl for providing the KATO III cell line; Miltenyi Biotech for kindly providing the anti-CD28 antibody; Caroline Bosch-Voskens for providing antibodies and donor cells; and Michael Aigner and Özcan Met for fruitful discussion on elutriation-derived T cells. This project was financed by the Wilhelm Sander-Stiftung (2010.001.1) and BayImmuNet (F5121.7.1.1/10/).

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The manuscript does not contain clinical studies or patient data. Human blood was used after informed consent approved by the institutional review board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Schaft.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krug, C., Wiesinger, M., Abken, H. et al. A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunol Immunother 63, 999–1008 (2014). https://doi.org/10.1007/s00262-014-1572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1572-5

Keywords

Navigation