Skip to main content

Advertisement

Log in

Intrinsically de-sialylated CD103+ CD8 T cells mediate beneficial anti-glioma immune responses

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Cancer vaccines reproducibly cure laboratory animals and reveal encouraging trends in brain tumor (glioma) patients. Identifying parameters governing beneficial vaccine-induced responses may lead to the improvement of glioma immunotherapies. CD103+ CD8 T cells dominate post-vaccine responses in human glioma patients for unknown reasons, but may be related to recent thymic emigrant (RTE) status. Importantly, CD8 RTE metrics correlated with beneficial immune responses in vaccinated glioma patients.

Methods

We show by flow cytometry that murine and human CD103+ CD8 T cells respond better than their CD103 counterparts to tumor peptide-MHC I (pMHC I) stimulation in vitro and to tumor antigens on gliomas in vivo.

Results

Glioma responsive T cells from mice and humans both exhibited intrinsic de-sialylation-affecting CD8 beta. Modulation of CD8 T cell sialic acid with neuraminidase and ST3Gal-II revealed de-sialylation was necessary and sufficient for promiscuous binding to and stimulation by tumor pMHC I. Moreover, de-sialylated status was required for adoptive CD8 T cells and lymphocytes to decrease GL26 glioma invasiveness and increase host survival in vivo. Finally, increased tumor ST3Gal-II expression correlated with clinical vaccine failure in a meta-analysis of high-grade glioma patients.

Conclusions

Taken together, these findings suggest that de-sialylation of CD8 is required for hyper-responsiveness and beneficial anti-glioma activity by CD8 T cells. Because CD8 de-sialylation can be induced with exogenous enzymes (and appears particularly scarce on human T cells), it represents a promising target for clinical glioma vaccine improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

DC:

Dendritic cell

GBM:

Glioblastoma multiforme

IFN-γ:

Interferon-gamma

IL-12:

Interleukin-12

MHC I:

Major histocompatibility complex class I

PNA:

Peanut agglutinin

RTE:

Recent thymic emigrant

TCR:

T cell receptor

References

  1. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25:4127–4136

    Article  CAS  PubMed  Google Scholar 

  2. Yu JS, Wheeler CJ, Zeltzer PM et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847

    CAS  PubMed  Google Scholar 

  3. Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50:337–344

    Article  CAS  PubMed  Google Scholar 

  4. Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T, Narita M, Takahashi M, Tanaka R (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific cytotoxic T cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  CAS  PubMed  Google Scholar 

  6. Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL, Kufe DW, Ohno T (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27:452–459

    Article  CAS  PubMed  Google Scholar 

  7. Rutkowski S, De Vleeschouwer S, Kaempgen E et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Yamanaka R, Homma J, Yajima N et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167

    Article  CAS  PubMed  Google Scholar 

  9. Liau LM, Prins RM, Kiertscher SM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    Article  CAS  PubMed  Google Scholar 

  10. De Vleeschouwer S, Fieuws S, Rutkowski S et al (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104

    Article  PubMed  Google Scholar 

  11. Wheeler CJ, Black KL, Liu G et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964

    Article  CAS  PubMed  Google Scholar 

  12. Wheeler CJ, Das A, Liu G, Yu JS, Black KL (2004) Clinical responsiveness of glioblastoma multiform to chemotherapy after vaccination. Clin Cancer Res 10:5316–5326

    Article  CAS  PubMed  Google Scholar 

  13. Okada H, Kalinski P, Ueda R et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wheeler CJ, Black KL, Liu G, Ying H, Yu JS, Zhang W, Lee PK (2003) Thymic CD8+ T cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. J Immunol 171:4927–4933

    Article  CAS  PubMed  Google Scholar 

  15. Schon MP, Arya A, Murphy EA et al (1999) Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice. J Immunol 162:6641–6649

    CAS  PubMed  Google Scholar 

  16. McFarland RD, Douek DC, Koup RA, Picker LJ (2000) Identification of a human recent thymic emigrant phenotype. Proc Natl Acad Sci USA 97:4215–4220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Annunziato F, Cosmi L, Liotta F et al (2006) CXCR3 and αEβ7 integrin identify a subset of CD8+ mature thymocytes that share phenotypic and functional properties with CD8+ gut intraepithelial lymphocytes. Gut 55:961–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Scott CL, Aumeunier AM, Mowat AM (2011) Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 32:412–419. doi:10.1016/j.it.2011.06.003

    Article  CAS  PubMed  Google Scholar 

  19. Li L, Kim S, Herndon J et al (2012) Cross-dressed CD8α+/CD103+ dendritic cells prime CD8+ T cells following vaccination. Proc Natl Acad Sci USA 109:12716–12721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sung SS, Fu SM, Rose CE Jr, Gaskin F, Ju ST, Beaty SR (2006) A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176:2161–2172

    Article  CAS  PubMed  Google Scholar 

  21. Allez M, Brimnes J, Dotan I, Mayer L (2002) Expansion of CD8+ T cells with regulatory function after interaction with intestinal epithelial cells. Gastroenterology 123:1516–1526

    Article  PubMed  Google Scholar 

  22. Annacker O, Coombes JL, Malmstrom V, Uhlig HH, Bourne T, Johansson-Lindbom B, Agace WW, Parker CM, Powrie F (2005) Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J Exp Med 202:1051–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu Y, Lan Q, Lu L et al (2014) Phenotypic and functional characteristic of a newly identified CD8+ Foxp3-CD103+ regulatory T cells. J Mol Cell Biol 6:81–92

    Article  CAS  PubMed  Google Scholar 

  24. Calzascia T, Masson F, Di Berardino-Besson W, Contassot E, Wilmotte R, Aurrand-Lions M, Rüegg C, Dietrich PY, Walker PR (2005) Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22:175–184

    Article  CAS  PubMed  Google Scholar 

  25. Masson F, Calzascia T, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR (2007) Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J Immunol 179:845–853

    Article  CAS  PubMed  Google Scholar 

  26. Wakim LM, Woodward-Davis A, Bevan MJ (2010) Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci USA 107:17872–17879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Casey KA, Fraser KA, Schenkel JM et al (2012) Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J Immunol 188:4866–4875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Priatel JJ, Chui D, Hiraoka N, Simmons CJT, Richardson KB, Page DM, Fukuda M, Varki NM, Marth JD (2000) The ST3Gal-1 sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12:273–283

    Article  CAS  PubMed  Google Scholar 

  29. Moody AM, Chui D, Reche PA, Priatel JJ, Marth JD, Reinherz EL (2001) Developmentally regulated glycosylation of the CD8alphabeta coreceptor stalk modulates ligand binding. Cell 107:501–512

    Article  CAS  PubMed  Google Scholar 

  30. Daniels MA, Devine L, Miller JD, Moser JM, Lukacher AE, Altman JD, Kavathas P, Hogquist KA, Jameson SC (2001) CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15:1051–1061

    Article  CAS  PubMed  Google Scholar 

  31. Brennan PJ, Saouaf SJ, Van Dyken S, Marth JD, Li B, Bhandoola A, Greene MI (2006) Sialylation regulates peripheral tolerance in CD4+ T cells. Int Immunol 18:627–635

    Article  CAS  PubMed  Google Scholar 

  32. Irvin DK, Jouanneau E, Duvall G et al (2010) T cells enhance stem-like properties and conditional malignancy in gliomas. PLoSONE 5:e10974

    Article  Google Scholar 

  33. Phuphanich S, Wheeler CJ, Rudnick JD et al (2013) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63:8487–8491

    CAS  PubMed  Google Scholar 

  35. Prins RM, Incardona F, Lau R, Lee P, Claus S, Zhang W, Black KL, Wheeler CJ (2004) Characterization of defective CD4-CD8-T cells in murine tumors generated independent of antigen specificity. J Immunol 172:1602–1611

    Article  CAS  PubMed  Google Scholar 

  36. Jouanneau E, Poujol D, Gulia S, Le Mercier I, Blay JY, Belin MF, Puisieux I (2006) Dendritic cells are essential for priming but inefficient for boosting antitumour immune response in an orthotopic murine glioma model. Cancer Immunol Immunother 55:254–267

    Article  CAS  PubMed  Google Scholar 

  37. Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF, Mischel PS, Nelson SF (2003) Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 22:4918–4923

    Article  CAS  PubMed  Google Scholar 

  38. Sempowski GD, Gooding ME, Liao HX, Le PT, Haynes BF (2002) T cell receptor excision circle assessment of thymopoiesis in aging mice. Mol Immunol 38:841–848

    Article  CAS  PubMed  Google Scholar 

  39. Pappu BP, Shrikant PA (2004) Alteration of cell surface sialylation regulates antigen-induced naive CD8+ T cell responses. J Immunol 173:275–284

    Article  CAS  PubMed  Google Scholar 

  40. Lee YC, Kojima N, Wada E, Kurosawa N, Nakaoka T, Hamamoto T, Tsuji S (1994) Cloning and expression of cDNA for a new type of Gal beta 1,3GalNAc alpha 2,3-sialyltransferase. J Biol Chem 269:10028–10033

    CAS  PubMed  Google Scholar 

  41. Wu W, Harley PH, Punt JA, Sharrow SO, Kearse KP (1996) Identification of CD8 as a peanut agglutinin (PNA) receptor molecule on immature thymocytes. J Exp Med 184:759–764

    Article  CAS  PubMed  Google Scholar 

  42. Prins RM, Graf MR, Merchant RE, Black KL, Wheeler CJ (2003) Deficits in thymic function and output of recent thymic emigrant T cells during intracranial glioma progression. J Neurooncol 64:45–54

    PubMed  Google Scholar 

  43. Wheeler CJ, Black KL (2011) Vaccines for glioblastoma and high-grade glioma. Expert Rev Vaccines 10:875–886

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all the patients and their families who contributed tumor tissue and/or participated in clinical trials included in this study. This work was supported by the Maxine Dunitz Neurosurgical Institute and in part by Grants from the Joseph Drown Foundation and National Institutes of Health [NS054162-01] to Christopher J. Wheeler.

Conflict of interest

Keith L. Black has ownership and stock interests in ImmunoCellular Therapeutics, Inc. Christopher J. Wheeler and Keith L. Black are holders of the following relevant patents: US patent 7,705,010B2, “Use of Minoxidil Sulfate as an Anti-Cancer Drug,” which describes combining DC vaccination with minoxidil sulfate to treat high-grade gliomas. Patent WO/2005/043155, “System and method for the treatment of cancer, including cancers of the central nervous system,” which describes combining DC vaccination with chemotherapy to treat high-grade gliomas. No other authors have conflicts or potential conflicts to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Wheeler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouanneau, E., Black, K.L., Veiga, L. et al. Intrinsically de-sialylated CD103+ CD8 T cells mediate beneficial anti-glioma immune responses. Cancer Immunol Immunother 63, 911–924 (2014). https://doi.org/10.1007/s00262-014-1559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1559-2

Keywords

Navigation