Skip to main content

Managing Regulatory T Cells to Improve Cancer Immunotherapy

  • Chapter
  • First Online:
Cancer Immunotherapy
  • 2635 Accesses

Abstract

Regulatory T cells (Tregs) are increased in peripherally circulating blood cells and in the solid tumor masses of patients afflicted with many different cancer histologies. Cancer Tregs not only are capable of impeding endogenous protective anti-tumor immunity from optimal functioning but are also capable of impeding the efficacy of anti-cancer immunotherapy. Tumor-associated Tregs represent heterogeneous populations, differing by their origins and in their mechanisms used to impede anti-tumor immunity. Their properties can differ compared to those in peripheral circulation. Most studies now report that Treg content in the tumor inversely correlates with survival or therapeutic response, but a few reports suggest that Tregs are beneficial to patients with certain types of cancers. Therapeutic strategies to manage Treg capacity to mediate immune dysfunction include depletion, regulatory functional blockade, differentiation blockade, altering trafficking, differentiation diversion, or raising the threshold of anti-cancer effector cells for Treg-mediated regulation. Several clinical trials have shown the feasibility and relative safety of managing Tregs in human cancer, although treatment effects are modest. This chapter will review contemporary knowledge of Tregs in cancers, including origins, mechanisms of action, interactions with other immune cells and strategies for therapeutic management, addresses the major questions facing the field and suggests additional important areas for future research. The focus is on CD4+CD25+Foxp3+ Tregs, but other cancer-associated regulatory cells will be addressed in brief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  2. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  3. Fontenot JD et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    Article  PubMed  CAS  Google Scholar 

  4. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  5. Curiel TJ (2007) Regulatory T-cell development: is Foxp3 the decider? Nat Med 13:250–253

    Article  PubMed  CAS  Google Scholar 

  6. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T Cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–64

    Article  PubMed  CAS  Google Scholar 

  7. Woo EY et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early- stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    PubMed  CAS  Google Scholar 

  8. Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  9. Woo EY et al (2002) Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276

    PubMed  CAS  Google Scholar 

  10. Javia LR, Rosenberg SA (2003) CD4 + CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 26:85–93

    Article  PubMed  CAS  Google Scholar 

  11. Somasundaram R et al (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62:5267–5272

    PubMed  CAS  Google Scholar 

  12. Wolf AM et al (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  13. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4 + CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099

    Article  PubMed  Google Scholar 

  14. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25 + CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  15. Liyanage UK et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    PubMed  CAS  Google Scholar 

  16. Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  17. Bach JF (2003) Regulatory T cells under scrutiny. Nat Rev Immunol 3:189–198

    Article  PubMed  CAS  Google Scholar 

  18. Loskog A et al (2007) Human bladder carcinoma is dominated by T-regulatory cells and Th1 inhibitory cytokines. J Urol 177:353–358

    Article  PubMed  Google Scholar 

  19. Visser J et al (2007) Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin Exp Immunol 150:199–209

    Article  PubMed  CAS  Google Scholar 

  20. Kaporis HG et al (2007) Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J Invest Dermatol 127:2391–2398

    Article  PubMed  CAS  Google Scholar 

  21. Lau KM et al (2007) Increase in circulating Foxp3 + CD4 + CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96:617–622

    Article  PubMed  CAS  Google Scholar 

  22. Mourmouras V et al (2007) Evaluation of tumour-infiltrating CD4 + CD25 + FOXP3+ regulatory T cells in human cutaneous benign and atypical naevi, melanomas and melanoma metastases. Br J Dermatol 157:531–539

    Article  PubMed  CAS  Google Scholar 

  23. Ling KL et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7

    PubMed  Google Scholar 

  24. Nagorsen D et al (2007) Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival. J Transl Med 5:62

    Article  PubMed  CAS  Google Scholar 

  25. Szczepanski MJ et al (2009) Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res 15:3325–3332

    Article  PubMed  CAS  Google Scholar 

  26. Sugihara AQ, Rolle CE, Lesniak MS (2009) Regulatory T cells actively infiltrate metastatic brain tumors. Int J Oncol 34:1533–1540

    PubMed  Google Scholar 

  27. Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257

    Article  PubMed  CAS  Google Scholar 

  28. Thornton AM et al (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184:3433–3441

    Article  PubMed  CAS  Google Scholar 

  29. Josefowicz SZ et al (2012) Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–399

    Article  PubMed  CAS  Google Scholar 

  30. Zheng Y et al (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812

    Article  PubMed  CAS  Google Scholar 

  31. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  32. Zhou G, Levitsky HI (2007) Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol 178:2155–2162

    PubMed  CAS  Google Scholar 

  33. Yokokawa J et al (2008) Enhanced functionality of CD4 + CD25highFoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res 14:1032–1040

    Article  PubMed  CAS  Google Scholar 

  34. Strauss L, Bergmann C, Whiteside TL (2009) Human circulating CD4 + CD25highFoxp3+ regulatory T cells kill autologous CD8+ but not CD4+ responder cells by Fas-mediated apoptosis. J Immunol 182:1469–1480

    PubMed  CAS  Google Scholar 

  35. Liu VC et al (2007) Tumor evasion of the immune system by converting CD4 + CD25- T cells into CD4 + CD25+ T regulatory cells: role of tumor-derived TGF-beta. J Immunol 178:2883–2892

    PubMed  CAS  Google Scholar 

  36. Han Y, Guo Q, Zhang M, Chen Z, Cao X (2009) CD69+ CD4+ CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J Immunol 182:111–120

    Article  PubMed  CAS  Google Scholar 

  37. Liu W et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711

    Article  PubMed  CAS  Google Scholar 

  38. Bruder D et al (2004) Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 34:623–630

    Article  PubMed  CAS  Google Scholar 

  39. Battaglia A et al (2008) Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 123:129–138

    Article  PubMed  CAS  Google Scholar 

  40. Yano H et al (2007) Regulatory T-cell function of adult T-cell leukemia/lymphoma cells. Int J Cancer 120:2052–2057

    Article  PubMed  CAS  Google Scholar 

  41. Hallermann C, Niermann C, Schulze HJ (2007) Regulatory T-cell phenotype in association with large cell transformation of mycosis fungoides. Eur J Haematol 78:260–263

    Article  PubMed  Google Scholar 

  42. Karube K et al (2008) The relationship of FOXP3 expression and clinicopathological characteristics in adult T-cell leukemia/lymphoma. Mod Pathol 21:617–625

    Article  PubMed  CAS  Google Scholar 

  43. Tan W et al (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470:548–553

    Article  PubMed  CAS  Google Scholar 

  44. Facciabene A et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230

    Article  PubMed  CAS  Google Scholar 

  45. Darrasse-Jeze G et al (2009) Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med 206:1853–1862

    Article  PubMed  CAS  Google Scholar 

  46. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  PubMed  CAS  Google Scholar 

  47. Wan YY, Flavell RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445:766–770

    Article  PubMed  CAS  Google Scholar 

  48. Lin PY et al (2010) B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol 185:2747–2753

    Article  PubMed  CAS  Google Scholar 

  49. Mold JE et al (2008) Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science 322:1562–1565

    Article  PubMed  CAS  Google Scholar 

  50. Kryczek I et al (2009) FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res 69:3995–4000

    Article  PubMed  CAS  Google Scholar 

  51. Wieczorek G et al (2009) Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res 69:599–608

    Article  PubMed  CAS  Google Scholar 

  52. Mandapathil M, Lang S, Gorelik E, Whiteside TL (2009) Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. J Immunol Methods 346:55–63

    Article  PubMed  CAS  Google Scholar 

  53. Vence L et al (2007) Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci USA 104:20884–20889

    Article  PubMed  CAS  Google Scholar 

  54. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  55. Poutahidis T et al (2007) Rapid reversal of interleukin-6-dependent epithelial invasion in a mouse model of microbially induced colon carcinoma. Carcinogenesis 28:2614–2623

    Article  PubMed  CAS  Google Scholar 

  56. Chaudhry A et al (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–991

    Article  PubMed  CAS  Google Scholar 

  57. Zheng Y et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458:351–356

    Article  PubMed  CAS  Google Scholar 

  58. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67:8865–8873

    Article  PubMed  CAS  Google Scholar 

  59. Li X et al (2007) Human ovarian carcinoma cells generate CD4(+)CD25(+) regulatory T cells from peripheral CD4(+)CD25(−) T cells through secreting TGF-beta. Cancer Lett 253:144–153

    Article  PubMed  CAS  Google Scholar 

  60. Munn DH (2011) Indoleamine 2,3-dioxygenase, Tregs and cancer. Curr Med Chem 18:2240–2246

    Article  PubMed  CAS  Google Scholar 

  61. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM (2007) CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+ CD25 T cells. Blood 110:2537–2544

    Article  PubMed  CAS  Google Scholar 

  62. Juszczynski P et al (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 104:13134–13139

    Article  PubMed  CAS  Google Scholar 

  63. Mittal S et al (2008) Local and systemic induction of CD4 + CD25+ regulatory T cell population by non-Hodgkin’s lymphoma. Blood 111:5359–5370

    Article  PubMed  CAS  Google Scholar 

  64. Baumgartner J et al (2007) Melanoma induces immunosuppression by up-regulating FOXP3(+) regulatory T cells. J Surg Res 141:72–77

    Article  PubMed  CAS  Google Scholar 

  65. Sharma MD et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570–2582

    Article  PubMed  CAS  Google Scholar 

  66. Curiel TJ et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567

    Article  PubMed  CAS  Google Scholar 

  67. Zou W et al (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346

    Article  PubMed  CAS  Google Scholar 

  68. Mizukami Y et al (2008) CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer 122:2286–2293

    Article  PubMed  CAS  Google Scholar 

  69. Shimizu Y et al (2009) CXCR4 + FOXP3 + CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. Int J Immunopathol Pharmacol 22:43–51

    PubMed  CAS  Google Scholar 

  70. Wei S et al (2007) Interleukin-2 administration alters the CD4 + FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res 67:7487–7494

    Article  PubMed  CAS  Google Scholar 

  71. Ghiringhelli F et al (2005) Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4 + CD25+ regulatory T cell proliferation. J Exp Med 202:919–929

    Article  PubMed  CAS  Google Scholar 

  72. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    Article  PubMed  CAS  Google Scholar 

  73. Hirschhorn-Cymerman D et al (2009) OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med 206:1103–1116

    Article  PubMed  CAS  Google Scholar 

  74. Xie Q, Gan L, Wang J, Wilson I, Li L (2007) Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth. Mol Immunol 44:3453–3461

    Article  PubMed  CAS  Google Scholar 

  75. Habicht A et al (2007) A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol 179:5211–5219

    PubMed  CAS  Google Scholar 

  76. Schreiber TH (2007) The use of FoxP3 as a biomarker and prognostic factor for malignant human tumors. Cancer Epidemiol Biomarkers Prev 16:1931–1934

    Article  PubMed  CAS  Google Scholar 

  77. Pillai V, Karandikar NJ (2007) Human regulatory T cells: a unique, stable thymic subset or a reversible peripheral state of differentiation? Immunol Lett 114:9–15

    Article  PubMed  CAS  Google Scholar 

  78. Zhou X et al (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10:1000–1007

    Article  PubMed  CAS  Google Scholar 

  79. Miyao T et al (2012) Plasticity of foxp3(+) T cells reflects promiscuous foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36:262–275

    Article  PubMed  CAS  Google Scholar 

  80. Kryczek I et al (2011) IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol 186:4388–4395

    Article  PubMed  CAS  Google Scholar 

  81. Perrone G et al (2008) Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur J Cancer 44:1875–1882

    Article  PubMed  CAS  Google Scholar 

  82. Kobayashi N et al (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911

    Article  PubMed  CAS  Google Scholar 

  83. Sasaki A et al (2008) Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur J Surg Oncol 34:173–179

    Article  PubMed  CAS  Google Scholar 

  84. Miracco C et al (2007) Utility of tumour-infiltrating CD25 + FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol Rep 18:1115–1122

    PubMed  Google Scholar 

  85. Tzankov A et al (2008) Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 93:193–200

    Article  PubMed  CAS  Google Scholar 

  86. Salama P et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    Article  PubMed  Google Scholar 

  87. Badoual C et al (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472

    Article  PubMed  CAS  Google Scholar 

  88. Kakinuma T et al (2007) Small numbers of residual tumor cells at the site of primary inoculation are critical for anti-tumor immunity following challenge at a secondary location. Cancer Immunol Immunother 56:1119–1131

    Article  PubMed  Google Scholar 

  89. Siddiqui SA et al (2007) Tumor-infiltrating Foxp3-CD4 + CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res 13:2075–2081

    Article  PubMed  CAS  Google Scholar 

  90. Grabenbauer GG, Lahmer G, Distel L, Niedobitek G (2006) Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin Cancer Res 12:3355–3360

    Article  PubMed  CAS  Google Scholar 

  91. Wada J et al (2008) Regulatory T-cells are possible effect prediction markers of immunotherapy for cancer patients. Anticancer Res 28:2401–2408

    PubMed  CAS  Google Scholar 

  92. Ladoire S et al (2008) Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res 14:2413–2420

    Article  PubMed  CAS  Google Scholar 

  93. Derhovanessian E et al (2009) Pretreatment frequency of circulating IL-17+ CD4+ T-cells, but not Tregs, correlates with clinical response to whole-cell vaccination in prostate cancer patients. Int J Cancer 125:1372–1379

    Article  PubMed  CAS  Google Scholar 

  94. Sorrentino C, Musiani P, Pompa P, Cipollone G, Di Carlo E (2011) Androgen deprivation boosts prostatic infiltration of cytotoxic and regulatory T lymphocytes and has no effect on disease-free survival in prostate cancer patients. Clin Cancer Res 17:1571–1581

    Article  PubMed  CAS  Google Scholar 

  95. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4 + CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311

    Article  PubMed  CAS  Google Scholar 

  96. Mizukami Y et al (2008) Localisation pattern of Foxp3(+) regulatory T cells is associated with clinical behaviour in gastric cancer. Br J Cancer 98:148–153

    Article  PubMed  CAS  Google Scholar 

  97. Jordanova ES et al (2008) Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res 14:2028–2035

    Article  PubMed  CAS  Google Scholar 

  98. Kelley TW, Pohlman B, Elson P, Hsi ED (2007) The ratio of FOXP3+ regulatory T cells to granzyme B + cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am J Clin Pathol 128:958–965

    Article  PubMed  Google Scholar 

  99. Turk MJ et al (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782

    Article  PubMed  CAS  Google Scholar 

  100. Betts G et al (2007) The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br J Cancer 96:1849–1854

    Article  PubMed  CAS  Google Scholar 

  101. Beissert S, Loser K (2008) Molecular and cellular mechanisms of photocarcinogenesis. Photochem Photobiol 84:29–34

    PubMed  CAS  Google Scholar 

  102. Molling JW et al (2007) CD4(+)CD25hi regulatory T-cell frequency correlates with persistence of human papillomavirus type 16 and T helper cell responses in patients with cervical intraepithelial neoplasia. Int J Cancer 121:1749–1755

    Article  PubMed  CAS  Google Scholar 

  103. van der Burg SH et al (2007) Association of cervical cancer with the presence of CD4+ regulatory T cells specific for human papillomavirus antigens. Proc Natl Acad Sci USA 104:12087–12092

    Article  PubMed  CAS  Google Scholar 

  104. Zhou G, Drake CG, Levitsky HI (2006) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107:628–636

    Article  PubMed  CAS  Google Scholar 

  105. Welters MJ et al (2008) Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res 14:178–187

    Article  PubMed  CAS  Google Scholar 

  106. Hus I et al (2008) Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4 + CD25 + FoxP3+ regulatory T cells toward an antileukemia response. Leukemia 22:1007–1017

    Article  PubMed  CAS  Google Scholar 

  107. Francois V et al (2009) The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res 69:4335–4345

    Article  PubMed  CAS  Google Scholar 

  108. Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108:2655–2661

    Article  PubMed  CAS  Google Scholar 

  109. Palucka AK, Ueno H, Fay JW, Banchereau J (2007) Taming cancer by inducing immunity via dendritic cells. Immunol Rev 220:129–150

    Article  PubMed  CAS  Google Scholar 

  110. Ahonen CL et al (2008) Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared to unitary adjuvants as cancer vaccines. Blood 111:3116–3125

    Article  PubMed  CAS  Google Scholar 

  111. Chen W, Yan W, Huang L (2008) A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol Immunother 57:517–530

    Article  PubMed  CAS  Google Scholar 

  112. Yang Y et al (2007) Tumor cells expressing anti-CD137 scFv induce a tumor-destructive environment. Cancer Res 67:2339–2344

    Article  PubMed  CAS  Google Scholar 

  113. Han S et al (2008) Overcoming immune tolerance against multiple myeloma with lentiviral calnexin-engineered dendritic cells. Mol Ther 16:269–279

    Article  PubMed  CAS  Google Scholar 

  114. Malek TR, Porter BO, Codias EK, Scibelli P, Yu A (2000) Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 164:2905–2914

    PubMed  CAS  Google Scholar 

  115. Malek TR, Yu A, Vincek V, Scibelli P, Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167–178

    Article  PubMed  CAS  Google Scholar 

  116. Sosman JA et al (2008) Three phase II cytokine working group trials of gp100 (210 M) peptide plus high-dose interleukin-2 in patients with HLA-A2-positive advanced melanoma. J Clin Oncol 26:2292–2298

    Article  PubMed  CAS  Google Scholar 

  117. Zabala M et al (2007) Induction of immunosuppressive molecules and regulatory T cells counteracts the antitumor effect of interleukin-12-based gene therapy in a transgenic mouse model of liver cancer. J Hepatol 47:807–815

    Article  PubMed  CAS  Google Scholar 

  118. Brode S, Cooke A (2008) Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit Rev Immunol 28:109–126

    Article  PubMed  CAS  Google Scholar 

  119. Liu JY et al (2007) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56:1597–1604

    Article  PubMed  CAS  Google Scholar 

  120. Generali D et al (2009) Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res 15:1046–1051

    Article  PubMed  CAS  Google Scholar 

  121. Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634

    Article  PubMed  CAS  Google Scholar 

  122. Larmonier N et al (2008) Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol 181:6955–6963

    PubMed  CAS  Google Scholar 

  123. Yaqub S et al (2008) Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer Immunol Immunother 57:813–821

    Article  PubMed  CAS  Google Scholar 

  124. Lonnroth C et al (2008) Preoperative treatment with a non-steroidal anti-inflammatory drug (NSAID) increases tumor tissue infiltration of seemingly activated immune cells in colorectal cancer. Cancer Immun 8:5

    PubMed  Google Scholar 

  125. Li B et al (2007) FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104:4571–4576

    Article  PubMed  CAS  Google Scholar 

  126. Tao R et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307

    Article  PubMed  CAS  Google Scholar 

  127. Kato Y et al (2007) Synergistic in vivo antitumor effect of the histone deacetylase inhibitor MS-275 in combination with interleukin 2 in a murine model of renal cell carcinoma. Clin Cancer Res 13:4538–4546

    Article  PubMed  CAS  Google Scholar 

  128. Kang SG, Lim HW, Andrisani OM, Broxmeyer HE, Kim CH (2007) Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 179:3724–3733

    PubMed  CAS  Google Scholar 

  129. Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4 + Foxp3+ cells. J Exp Med 205:565–574

    Article  PubMed  CAS  Google Scholar 

  130. Harrison DE et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    PubMed  CAS  Google Scholar 

  131. Galustian C et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045

    Article  PubMed  CAS  Google Scholar 

  132. Horlock C et al (2009) The effects of trastuzumab on the CD4 + CD25 + FoxP3+ and CD4 + IL17A + T-cell axis in patients with breast cancer. Br J Cancer 100:1061–1067

    Article  PubMed  CAS  Google Scholar 

  133. Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20:241–246

    Article  PubMed  CAS  Google Scholar 

  134. Rüter J et al (2009) Altering regulatory T cell function in cancer immunotherapy: a novel means to boost efficacy. Front Biosci 14:1761–1770

    Article  PubMed  Google Scholar 

  135. Tanaka H, Tanaka J, Kjaergaard J, Shu S (2002) Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 25:207–217

    Article  PubMed  CAS  Google Scholar 

  136. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A (2002) Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32:3267–3275

    Article  PubMed  CAS  Google Scholar 

  137. Steitz J, Bruck J, Lenz J, Knop J, Tuting T (2001) Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 61:8643–8646

    PubMed  CAS  Google Scholar 

  138. Sutmuller RP et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832

    Article  PubMed  CAS  Google Scholar 

  139. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174

    Article  PubMed  CAS  Google Scholar 

  140. Rech AJ et al (2012) CD25 blockade depletes and selectively reprograms regulatory T-cells and cooperates with immunotherapy in cancer patients. Sci Transl Med 4:134ra62

    Article  PubMed  CAS  Google Scholar 

  141. Rasku MA et al (2008) Transient T cell depletion causes regression of melanoma metastases. J Transl Med 6:12

    Article  PubMed  CAS  Google Scholar 

  142. Telang S et al (2012) Phase II trial of the regulatory T cell-depleting agent, denileukin diftitox, in patients with unresectable stage IV melanoma. BMC Cancer 11:515

    Article  CAS  Google Scholar 

  143. Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 28:582–592

    Article  PubMed  CAS  Google Scholar 

  144. Attia P et al (2006) Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J Immunother 29:208–214

    Article  PubMed  CAS  Google Scholar 

  145. Colombo MP, Piconese S (2007) Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 7:880–887

    Article  PubMed  CAS  Google Scholar 

  146. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–39

    Article  PubMed  CAS  Google Scholar 

  147. Foss FM (2000) DAB(389)IL-2 (ONTAK): a novel fusion toxin therapy for lymphoma. Clin Lymphoma 1:110–116, discussion 117

    Article  PubMed  CAS  Google Scholar 

  148. Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ (2005) Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 54:369–377

    Article  PubMed  CAS  Google Scholar 

  149. Dannull J et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  150. Mahnke K et al (2007) Depletion of CD4 + CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int J Cancer 120:2723–2733

    Article  PubMed  CAS  Google Scholar 

  151. Hurez V et al (2012) Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 72:2089–2099

    Article  PubMed  CAS  Google Scholar 

  152. van der Most RG et al (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing effector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58:1219–1228

    Article  PubMed  CAS  Google Scholar 

  153. Shaffer J et al (2007) Regulatory T-cell recovery in recipients of haploidentical nonmyeloablative hematopoietic cell transplantation with a humanized anti-CD2 mAb, MEDI-507, with or without fludarabine. Exp Hematol 35:1140–1152

    Article  PubMed  CAS  Google Scholar 

  154. Zhang L et al (2008) Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 129:219–229

    Article  PubMed  CAS  Google Scholar 

  155. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380

    Article  PubMed  CAS  Google Scholar 

  156. Zuo T et al (2007) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129:1275–1286

    Article  PubMed  CAS  Google Scholar 

  157. Powell DJ Jr et al (2007) Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179:4919–4928

    PubMed  CAS  Google Scholar 

  158. Jing W, Orentas RJ, Johnson BD (2007) Induction of immunity to neuroblastoma early after syngeneic hematopoietic stem cell transplantation using a novel mouse tumor vaccine. Biol Blood Marrow Transplant 13:277–292

    Article  PubMed  CAS  Google Scholar 

  159. Powell DJ Jr, de Vries CR, Allen T, Ahmadzadeh M, Rosenberg SA (2007) Inability to mediate prolonged reduction of regulatory T cells after transfer of autologous CD25-depleted PBMC and interleukin-2 after lymphodepleting chemotherapy. J Immunother 30:438–447

    Article  PubMed  CAS  Google Scholar 

  160. Molenkamp BG et al (2007) Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res 13:2961–2969

    Article  PubMed  CAS  Google Scholar 

  161. Molavi O et al (2008) Synergistic antitumor effects of CpG oligodeoxynucleotide and STAT3 inhibitory agent JSI-124 in a mouse melanoma tumor model. Immunol Cell Biol 86:506–514

    Article  PubMed  CAS  Google Scholar 

  162. Kim JM, Rasmussen JP, Rudensky AY (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8:191–197

    Article  PubMed  CAS  Google Scholar 

  163. Hurez V et al (2012) Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 72:2089–2099

    Article  PubMed  CAS  Google Scholar 

  164. Wang HY et al (2004) Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20:107–118

    Article  PubMed  CAS  Google Scholar 

  165. Phan GQ et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100:8372–8377

    Article  PubMed  CAS  Google Scholar 

  166. Yamaguchi T et al (2007) Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 27:145–159

    Article  PubMed  CAS  Google Scholar 

  167. Quezada SA et al (2008) Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J Exp Med 205:2125–2138

    Article  PubMed  CAS  Google Scholar 

  168. Kavanagh B et al (2008) CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood 112:1175–1183

    Article  PubMed  CAS  Google Scholar 

  169. Maker AV, Attia P, Rosenberg SA (2005) Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 175:7746–7754

    PubMed  CAS  Google Scholar 

  170. Ralph C et al (2010) Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res 16:1662–1672

    Article  PubMed  CAS  Google Scholar 

  171. O'Mahony D et al (2007) A pilot study of CTLA-4 blockade after cancer vaccine failure in patients with advanced malignancy. Clin Cancer Res 13:958–964

    Article  PubMed  Google Scholar 

  172. Song XT et al (2008) A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat Med 14:258–265

    Article  PubMed  CAS  Google Scholar 

  173. Calzascia T et al (2008) CD4 T cells, lymphopenia, and IL-7 in a multistep pathway to autoimmunity. Proc Natl Acad Sci USA 105:2999–3004

    Article  PubMed  CAS  Google Scholar 

  174. Ostroukhova M et al (2006) Treg-mediated immunosuppression involves activation of the Notch-HES1 axis by membrane-bound TGF-beta. J Clin Invest 116:996–1004

    Article  PubMed  CAS  Google Scholar 

  175. Gobert M et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009

    Article  PubMed  CAS  Google Scholar 

  176. Bayry J et al (2008) In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci USA 105:10221–10226

    Article  PubMed  CAS  Google Scholar 

  177. Yamamoto K et al (2010) Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol 28:1591–1598

    Article  PubMed  CAS  Google Scholar 

  178. van der Vliet HJ et al (2007) Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin Cancer Res 13:2100–2108

    Article  PubMed  Google Scholar 

  179. Nitcheu-Tefit J et al (2007) Listeriolysin O expressed in a bacterial vaccine suppresses CD4 + CD25high regulatory T cell function in vivo. J Immunol 179:1532–1541

    PubMed  CAS  Google Scholar 

  180. Pallandre JR et al (2007) Role of STAT3 in CD4 + CD25 + FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol 179:7593–7604

    PubMed  CAS  Google Scholar 

  181. Sun L et al (2012) Aged regulatory T cells protect from autoimmune inflammation despite reduced STAT3 activation and decreased constraint of IL-17 producing T cells. Aging Cell 11:509–519

    Article  PubMed  CAS  Google Scholar 

  182. Wilke CM et al (2011) Th17 cells in cancer: help or hindrance? Carcinogenesis 32:643–649

    Article  PubMed  CAS  Google Scholar 

  183. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142

    Article  PubMed  CAS  Google Scholar 

  184. Kanamaru F et al (2004) Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J Immunol 172:7306–7314

    PubMed  CAS  Google Scholar 

  185. Levings MK et al (2002) Human CD25 + CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 196:1335–1346

    Article  PubMed  CAS  Google Scholar 

  186. Yang Y, Huang CT, Huang X, Pardoll DM (2004) Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5:508–515

    Article  PubMed  CAS  Google Scholar 

  187. Kurooka M, Kaneda Y (2007) Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res 67:227–236

    Article  PubMed  CAS  Google Scholar 

  188. Ono M et al (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446:685–689

    Article  PubMed  CAS  Google Scholar 

  189. Li B et al (2007) Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol 19:583–588

    Article  PubMed  CAS  Google Scholar 

  190. Mantel PY et al (2007) GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol 5:e329

    Article  PubMed  CAS  Google Scholar 

  191. Gabrilovich DI et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells [published erratum appears in Nat Med 1996 Nov;2(11):1267]. Nat Med 2:1096–1103

    Article  PubMed  CAS  Google Scholar 

  192. Quintana FJ et al (2008) Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  PubMed  CAS  Google Scholar 

  193. Kryczek I et al (2011) Human TH17 cells are long-lived effector memory cells. Sci Transl Med 3:104ra100

    Article  PubMed  CAS  Google Scholar 

  194. Sharma MD et al (2009) Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113:6102–6111

    Article  PubMed  CAS  Google Scholar 

  195. Radhakrishnan S et al (2008) Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J Immunol 181:3137–3147

    PubMed  CAS  Google Scholar 

  196. Litzinger MT et al (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110:3192–3201

    Article  PubMed  CAS  Google Scholar 

  197. Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  PubMed  CAS  Google Scholar 

  198. Egilmez NK, Kilinc MO, Gu T, Conway TF (2007) Controlled-release particulate cytokine adjuvants for cancer therapy. Endocr Metab Immune Disord Drug Targets 7:266–270

    Article  PubMed  CAS  Google Scholar 

  199. DuPage M, Mazumdar C, Schmidt LM, Cheung AF, Jacks T (2012) Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482:405–409

    Article  PubMed  CAS  Google Scholar 

  200. Matsushita H et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482:400–404

    Article  PubMed  CAS  Google Scholar 

  201. Feng Z, Hu W, Rajagopal G, Levine AJ (2008) The tumor suppressor p53: cancer and aging. Cell Cycle 7:842–847

    Article  PubMed  CAS  Google Scholar 

  202. Park JM, Terabe M, van den Broeke LT, Donaldson DD, Berzofsky JA (2005) Unmasking immunosurveillance against a syngeneic colon cancer by elimination of CD4+ NKT regulatory cells and IL-13. Int J Cancer 114:80–87

    Article  PubMed  CAS  Google Scholar 

  203. Degl'Innocenti E et al (2008) Peripheral T-cell tolerance associated with prostate cancer is independent from CD4 + CD25+ regulatory T cells. Cancer Res 68:292–300

    Article  PubMed  CAS  Google Scholar 

  204. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

  205. Kiniwa Y et al (2007) CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res 13:6947–6958

    Article  PubMed  CAS  Google Scholar 

  206. Chaput N et al (2009) Identification of CD8 + CD25 + Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58:520–529

    Article  PubMed  CAS  Google Scholar 

  207. Zhang C et al (2007) Donor CD8+ T cells mediate graft-versus-leukemia activity without clinical signs of graft-versus-host disease in recipients conditioned with anti-CD3 monoclonal antibody. J Immunol 178:838–850

    PubMed  CAS  Google Scholar 

  208. Terabe M et al (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1:515–520

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I regret that space limitations preclude citing many important works from my colleagues. Thanks to Vincent Hurez, Lishi Sun, Mark Kious, Suzanne Thibodeaux, Kruthi Murthy, Srilaskmi Pandaswara, AiJie Liu, and Sara Ludwig for expert technical assistance. Suzanne Thibodeaux helped create graphics. This work was supported by CA105207, CA054174, FD003118, the Fanny Rippel Foundation, the Voelcker Trust, the Hayes Endowment, The Holly Beach Public Library Association, The Owens Foundation The Hogg Foundation and UTHSCSA endowments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Curiel M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Curiel, T.J. (2013). Managing Regulatory T Cells to Improve Cancer Immunotherapy. In: Curiel, T. (eds) Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4732-0_9

Download citation

Publish with us

Policies and ethics