Skip to main content

Advertisement

Log in

A cytokine cocktail directly modulates the phenotype of DC-enriched anti-tumor T cells to convey potent anti-tumor activities in a murine model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive cell transfer (ACT) using ex vivo-expanded anti-tumor T cells such as tumor-infiltrated lymphocytes or genetically engineered T cells potently eradicates established tumors. However, these two approaches possess obvious limitations. Therefore, we established a novel methodology using total tumor RNA (ttRNA) to prime dendritic cells (DC) as a platform for the ex vivo generation of anti-tumor T cells. We evaluated the antigen-specific expansion and recognition of T cells generated by the ttRNA–DC–T platform, and directly modulated the differentiation status of these ex vivo-expanded T cells with a cytokine cocktail. Furthermore, we evaluated the persistence and in vivo anti-tumor efficacy of these T cells through murine xenograft and syngeneic tumor models. During ex vivo culture, IL-2 preferentially expanded CD4 subset, while IL-7 enabled homeostatic proliferation from the original precursors. T cells tended to lose CD62L during ex vivo culture using IL-2; however, IL-12 could maintain high levels of CD62L by increasing expression on effector T cells (Tem). In addition, we validated that OVA RNA–DC only selectively expanded T cells in an antigen-specific manner. A cytokine cocktail excluding the use of IL-2 greatly increased CD62Lhigh T cells which specifically recognized tumor cells, engrafted better in a xenograft model and exhibited superior anti-tumor activities in a syngeneic intracranial model. ACT using the ex vivo ttRNA–DC–T platform in conjunction with a cytokine cocktail generated potent CD62Lhigh anti-tumor T cells and imposes a novel T cell-based therapeutic with the potential to treat brain tumors and other cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steinman RM (2001) Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med 68(3):160–166

    PubMed  CAS  Google Scholar 

  2. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi:10.1038/32588

    Article  PubMed  CAS  Google Scholar 

  3. Iwami K, Shimato S, Ohno M, Okada H, Nakahara N, Sato Y, Yoshida J, Suzuki S, Nishikawa H, Shiku H, Natsume A, Wakabayashi T (2012) Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor alpha2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele. Cytotherapy 14(6):733–742. doi:10.3109/14653249.2012.666633

    PubMed  CAS  Google Scholar 

  4. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61(3):842–847

    PubMed  CAS  Google Scholar 

  5. Liau LM, Black KL, Prins RM, Sykes SN, DiPatre PL, Cloughesy TF, Becker DP, Bronstein JM (1999) Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg 90(6):1115–1124. doi:10.3171/jns.1999.90.6.1115

    Article  PubMed  CAS  Google Scholar 

  6. Mitchell DA, Nair SK (2000) RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest 106(9):1065–1069. doi:10.1172/JCI11405

    Article  PubMed  CAS  Google Scholar 

  7. Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, Gumin J, Henry V, Colman H, Priebe W, Sawaya R, Lang FF, Heimberger AB (2010) Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway. Mol Cancer Ther 9(1):67–78. doi:10.1158/1535-7163.MCT-09-0734

    Article  PubMed  CAS  Google Scholar 

  8. Wu A, Wei J, Kong LY, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12(11):1113–1125. doi:10.1093/neuonc/noq082

    Article  PubMed  CAS  Google Scholar 

  9. Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, Melillo G, Priebe W, Heimberger AB (2011) Hypoxia potentiates glioma-mediated immunosuppression. PLoS One 6(1):e16195. doi:10.1371/journal.pone.0016195

    Article  PubMed  CAS  Google Scholar 

  10. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol Off J Am Soc Clin Oncol 26(32):5233–5239. doi:JCO.2008.16.5449

    Article  CAS  Google Scholar 

  11. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129. doi:10.1126/science.1129003

    Article  PubMed  CAS  Google Scholar 

  12. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733. doi:10.1056/NEJMoa1103849

    Article  PubMed  CAS  Google Scholar 

  13. Yang I, Tihan T, Han SJ, Wrensch MR, Wiencke J, Sughrue ME, Parsa AT (2010) CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci Off J Neurosurg Soc Australas 17(11):1381–1385. doi:j.jocn.2010.03.031

    Article  Google Scholar 

  14. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115(6):1616–1626. doi:10.1172/JCI24480

    Article  PubMed  CAS  Google Scholar 

  15. Gattinoni L, Klebanoff CA, Restifo NP (2009) Pharmacologic induction of CD8+ T cell memory: better living through chemistry. Sci Transl Med. doi:10.1126/scitranslmed.3000302

    PubMed  Google Scholar 

  16. Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, Klebanoff CA, Rosenberg SA, Leonard WJ, Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111(11):5326–5333. doi:10.1182/blood-2007-09-113050

    Article  PubMed  CAS  Google Scholar 

  17. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102(27):9571–9576. doi:10.1073/pnas.0503726102

    Article  PubMed  CAS  Google Scholar 

  18. Decaluwe H, Taillardet M, Corcuff E, Munitic I, Law HK, Rocha B, Riviere Y, Di Santo JP (2010) Gamma(c) deficiency precludes CD8+ T cell memory despite formation of potent T cell effectors. Proc Natl Acad Sci USA 107(20):9311–9316. doi:10.1073/pnas.0913729107

    Article  PubMed  CAS  Google Scholar 

  19. Heninger AK, Theil A, Wilhelm C, Petzold C, Huebel N, Kretschmer K, Bonifacio E, Monti P (2012) IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J Immunol. doi:10.4049/jimmunol.1201286

    PubMed  Google Scholar 

  20. Lee JB, Lee KA, Chang J (2007) Phenotypic changes induced by IL-12 priming regulate effector and memory CD8 T cell differentiation. Int Immunol 19(9):1039–1048. doi:10.1093/intimm/dxm072

    Article  PubMed  CAS  Google Scholar 

  21. van Wely CA, Beverley PC, Brett SJ, Britten CJ, Tite JP (1999) Expression of L-selectin on Th1 cells is regulated by IL-12. J Immunol 163(3):1214–1221

    PubMed  Google Scholar 

  22. Ye Z, Xu S, Moyana T, Yang J, Xiang J (2008) Defect of CD8+ memory T cells developed in absence of IL-12 priming for secondary expansion. Cell Mol Immunol 5(2):147–152. doi:10.1038/cmi.2008.18

    Article  PubMed  CAS  Google Scholar 

  23. Diaz-Montero CM, El Naggar S, Al Khami A, El Naggar R, Montero AJ, Cole DJ, Salem ML (2008) Priming of naive CD8+ T cells in the presence of IL-12 selectively enhances the survival of CD8+ CD62Lhi cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother CII 57(4):563–572. doi:10.1007/s00262-007-0394-0

    Article  CAS  Google Scholar 

  24. Markley JC, Sadelain M (2010) IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice. Blood 115(17):3508–3519. doi:10.1182/blood-2009-09-241398

    Article  PubMed  CAS  Google Scholar 

  25. Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175(4):2261–2269

    PubMed  CAS  Google Scholar 

  26. Albrecht J, Frey M, Teschner D, Carbol A, Theobald M, Herr W, Distler E (2011) IL-21-treated naive CD45RA+CD8+ T cells represent a reliable source for producing leukemia-reactive cytotoxic T lymphocytes with high proliferative potential and early differentiation phenotype. Cancer Immunol Immunother CII 60(2):235–248. doi:10.1007/s00262-010-0936-8

    Article  CAS  Google Scholar 

  27. Hong JJ, Rosenberg SA, Dudley ME, Yang JC, White DE, Butman JA, Sherry RM (2010) Successful treatment of melanoma brain metastases with adoptive cell therapy. Clin Cancer Res 16(19):4892–4898. doi:10.1158/1078-0432.CCR-10-1507

    Article  PubMed  CAS  Google Scholar 

  28. Blankenhorn EP, Stranford SA, Smith PD, Hickey WF (1991) Genetic differences in the T cell receptor alleles of LEW rats and their encephalomyelitis-resistant derivative, LER, and their impact on the inheritance of EAE resistance. Eur J Immunol 21(9):2033–2041. doi:10.1002/eji.1830210910

    Article  PubMed  CAS  Google Scholar 

  29. Yang S, Gattinoni L, Liu F, Ji Y, Yu Z, Restifo NP, Rosenberg SA, Morgan RA (2011) In vitro generated anti-tumor T lymphocytes exhibit distinct subsets mimicking in vivo antigen-experienced cells. Cancer Immunol Immunother CII 60(5):739–749. doi:10.1007/s00262-011-0977-7

    Article  CAS  Google Scholar 

  30. Yang S, Ji Y, Gattinoni L, Zhang L, Yu Z, Restifo NP, Rosenberg SA, Morgan RA (2013) Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol Immunother CII 62(4):727–736. doi:10.1007/s00262-012-1378-2

    Article  CAS  Google Scholar 

  31. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180(1):83–93

    Article  PubMed  CAS  Google Scholar 

  32. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176(6):1693–1702

    Article  PubMed  CAS  Google Scholar 

  33. Zou JP, Yamamoto N, Fujii T, Takenaka H, Kobayashi M, Herrmann SH, Wolf SF, Fujiwara H, Hamaoka T (1995) Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-gamma production by anti-tumor T cells. Int Immunol 7(7):1135–1145

    Article  PubMed  CAS  Google Scholar 

  34. Zhang L, Kerkar SP, Yu Z, Zheng Z, Yang S, Restifo NP, Rosenberg SA, Morgan RA (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment. Mol Ther 19(4):751–759. doi:10.1038/mt.2010.313

    Article  PubMed  CAS  Google Scholar 

  35. Eisenring M, vom Berg J, Kristiansen G, Saller E, Becher B (2010) IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol 11(11):1030–1038. doi:10.1038/ni.1947

    Article  PubMed  CAS  Google Scholar 

  36. Yang S, Dudley ME, Rosenberg SA, Morgan RA (2010) A simplified method for the clinical-scale generation of central memory-like CD8+ T cells after transduction with lentiviral vectors encoding antitumor antigen T-cell receptors. J Immunother 33(6):648–658. doi:10.1097/CJI.0b013e3181e311cb

    Article  PubMed  CAS  Google Scholar 

  37. Kim PS, Ahmed R (2010) Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 22(2):223–230. doi:10.1016/j.coi.2010.02.005

    Article  PubMed  CAS  Google Scholar 

  38. Klebanoff CA, Gattinoni L, Restifo NP (2006) CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev 211:214–224. doi:10.1111/j.0105-2896.2006.00391.x

    Article  PubMed  CAS  Google Scholar 

  39. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712. doi:10.1038/44385

    Article  PubMed  CAS  Google Scholar 

  40. Fearon DT, Manders P, Wagner SD (2001) Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293(5528):248–250. doi:10.1126/science.1062589

    Article  PubMed  CAS  Google Scholar 

  41. Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH (2009) Stem cell-like plasticity of naive and distinct memory CD8+ T cell subsets. Semin Immunol 21(2):62–68. doi:10.1016/j.smim.2009.02.004

    Article  PubMed  CAS  Google Scholar 

  42. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118(1):294–305. doi:10.1172/JCI32103

    Article  PubMed  CAS  Google Scholar 

  43. Hinrichs CS, Borman ZA, Gattinoni L, Yu Z, Burns WR, Huang J, Klebanoff CA, Johnson LA, Kerkar SP, Yang S, Muranski P, Palmer DC, Scott CD, Morgan RA, Robbins PF, Rosenberg SA, Restifo NP (2011) Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117(3):808–814. doi:10.1182/blood-2010-05-286286

    Article  PubMed  CAS  Google Scholar 

  44. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297. doi:10.1038/nm.2446

    Article  PubMed  CAS  Google Scholar 

  45. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580. doi:10.1084/jem.20030590

    Article  PubMed  CAS  Google Scholar 

  46. Collins T, Williams A, Johnston GI, Kim J, Eddy R, Shows T, Gimbrone MA Jr, Bevilacqua MP (1991) Structure and chromosomal location of the gene for endothelial-leukocyte adhesion molecule 1. J Biol Chem 266(4):2466–2473

    PubMed  CAS  Google Scholar 

  47. Zhao L, Shey M, Farnsworth M, Dailey MO (2001) Regulation of membrane metalloproteolytic cleavage of l-selectin (CD62l) by the epidermal growth factor domain. J Biol Chem 276(33):30631–30640. doi:10.1074/jbc.M103748200

    Article  PubMed  CAS  Google Scholar 

  48. Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V, Foley JE, Massey PR, Felizardo TC, Riley JL, Levine BL, June CH, Medin JA, Fowler DH (2011) The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 3(111):111–120

    Article  Google Scholar 

  49. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8(5):765–772

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kendra Congdon for proofreading of the manuscript. This study was supported by NIH grants (5P50-CA108786, 3R21CA132891-02S1, 5R01-CA135272-05, 5R21NS067975-02, 5R21NS067980-02, 5R21NS068057-02, 3R01CA135272-02S1, R25-NS065731, 5P50-NS020023-29, 1P01-CA154291-01A1), and by Accelerate Brain Cancer Cure, National Brain Tumor Society, American Brain Tumor Association, Pediatric Brain Tumor Foundation of the United States, Goldhirsh Foundation, Brain Tumor Society, Ivy Foundation DTRI, Duke University Biomarker Factory Duke Cancer Institute, Duke Chandran.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Sampson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Archer, G.E., Flores, C.E. et al. A cytokine cocktail directly modulates the phenotype of DC-enriched anti-tumor T cells to convey potent anti-tumor activities in a murine model. Cancer Immunol Immunother 62, 1649–1662 (2013). https://doi.org/10.1007/s00262-013-1464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1464-0

Keywords

Navigation