Skip to main content

Advertisement

Log in

IL-21-treated naive CD45RA+ CD8+ T cells represent a reliable source for producing leukemia-reactive cytotoxic T lymphocytes with high proliferative potential and early differentiation phenotype

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Clinical tumor remissions after adoptive T-cell therapy are frequently not durable due to limited survival and homing of transfused tumor-reactive T cells, what can be mainly attributed to the long-term culture necessary for in vitro expansion. Here, we introduce an approach allowing the reliable in vitro generation of leukemia-reactive cytotoxic T lymphocytes (CTLs) from naive CD8+ T cells of healthy donors, leading to high cell numbers within a relatively short culture period. The protocol includes the stimulation of purified CD45RA+ CD8+ T cells with primary acute myeloid leukemia blasts of patient origin in HLA-class I-matched allogeneic mixed lymphocyte-leukemia cultures. The procedure allowed the isolation of a large diversity of HLA-A/-B/-C-restricted leukemia-reactive CTL clones and oligoclonal lines. CTLs showed reactivity to either leukemia blasts exclusively, or to leukemia blasts as well as patient-derived B lymphoblastoid-cell lines (LCLs). In contrast, LCLs of donor origin were not lysed. This reactivity pattern suggested that CTLs recognized leukemia-associated antigens or hematopoietic minor histocompatibility antigens. Consistent with this hypothesis, most CTLs did not react with patient-derived fibroblasts. The efficiency of the protocol could be further increased by addition of interleukin-21 during primary in vitro stimulation. Most importantly, leukemia-reactive CTLs retained the expression of early T-cell differentiation markers CD27, CD28, CD62L and CD127 for several weeks during culture. The effective in vitro expansion of leukemia-reactive CD8+ CTLs from naive CD45RA+ precursors of healthy donors can accelerate the molecular definition of candidate leukemia antigens and might be of potential use for the development of adoptive CTL therapy in leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

CTL:

Cytotoxic T lymphocyte

DLI:

Donor lymphocyte infusion

EBV:

Epstein–Barr virus

FAB:

French-American-British

GvH:

Graft-versus-host

GvL:

Graft-versus-leukemia

HLA:

Human leukocyte antigen

HSCT:

Hematopoietic stem-cell transplantation

LAA:

Leukemia-associated antigen

LCL B:

Lymphoblastoid-cell line

mAb:

Monoclonal antibody

mHag:

Minor histocompatibility antigen

MLLC:

Mixed lymphocyte-leukemia culture

PBMC:

Peripheral blood mononuclear cell

SIB:

Sibling donor

TCR:

T-cell receptor

References

  1. Kolb HJ (2008) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112:4371–4383

    Article  CAS  PubMed  Google Scholar 

  2. Falkenburg JHF, Heslop HE, Barrett AJ (2008) T cell therapy in allogeneic stem cell transplantation. Biol Blood Marrow Transplant 14:136–141

    Article  PubMed  Google Scholar 

  3. Barrett AJ (2008) Understanding and harnessing the graft-versus-leukaemia effect. Br J Haematol 142:877–888

    Article  CAS  PubMed  Google Scholar 

  4. Bleakley M, Riddell SR (2004) Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer 4:371–380

    Article  CAS  PubMed  Google Scholar 

  5. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115:1616–1626

    Article  CAS  PubMed  Google Scholar 

  6. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA et al (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576

    Article  CAS  PubMed  Google Scholar 

  7. Berger C, Turtle CJ, Jensen MC, Riddell SR (2009) Adoptive transfer of virus-specific and tumor-specific T cell immunity. Curr Opin Immunol 21:224–232

    Article  CAS  PubMed  Google Scholar 

  8. Klebanoff CA, Gattinoni L, Restifo NP (2006) CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev 211:214–224

    Article  CAS  PubMed  Google Scholar 

  9. Distler E, Wölfel C, Köhler S, Nonn M, Kaus N, Schnürer E, Meyer RG, Wehler TC, Huber C, Wölfel T, Hartwig UF, Herr W (2008) Acute myeloid leukemia (AML)-reactive cytotoxic T lymphocyte clones rapidly expanded from CD8+ CD62L(high)+ T cells of healthy donors prevent AML engraftment in NOD/SCID IL2Rγnull mice. Exp Hematol 36:451–463

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Bleakley M, Yee C (2005) IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 175:2261–2269

    CAS  PubMed  Google Scholar 

  11. Delmer A, Marie JP, Thevenin D, Cadiou M, Viguie F, Zittoun R (1989) Multivariate analysis of prognostic factors in acute myeloid leukemia: value of clonogenic leukemic cell properties. J Clin Oncol 7:738–746

    CAS  PubMed  Google Scholar 

  12. Nonn M, Herr W, Khan S, Todorova M, Link I, Thies J, Distler E, Kaltwasser M, Hoffmann J, Huber C, Hartwig UF (2008) Selective depletion of alloreactive T lymphocytes using patient-derived nonhematopoietic stimulator cells in allograft engineering. Transplantation 86:1427–1435

    Article  CAS  PubMed  Google Scholar 

  13. Dörrschuck A, Schmidt A, Schnürer E, Glückmann M, Albrecht C, Wölfel C, Lennerz V, Lifke A, Di Natale C, Ranieri E, Gesualdo L, Huber C, Karas M, Wölfel T, Herr W (2004) CD8+ cytotoxic T lymphocytes isolated from allogeneic healthy donors recognize HLA class Ia/Ib-associated renal carcinoma antigens with ubiquitous or restricted tissue expression. Blood 104:2591–2599

    Article  PubMed  Google Scholar 

  14. Dolstra H, Fredrix H, Maas F, Couline PG, Brasseur F, Mensink E, Adema GJ, De Witte TM, Figdor CG, Van de Wiel-van Kemenade E (1999) A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia. J Exp Med 189:301–308

    Article  CAS  PubMed  Google Scholar 

  15. Feng X, Hui KM, Younes HM, Brickner AG (2008) Targeting minor histocompatibility antigens in graft versus tumor or graft versus leukemia responses. Trends Immunol 29:624–632

    Article  CAS  PubMed  Google Scholar 

  16. Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells is associated with tumor regression. J Immunother 28:258–267

    Article  CAS  PubMed  Google Scholar 

  17. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J, Huang J, Powell DR Jr, Rosenberg SA (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173:7125–7130

    CAS  PubMed  Google Scholar 

  18. Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK, Loeb KR, Gooley TA, Brown ML, Koo KK, Rosinski KV et al (2010) Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 115:3869–3878

    Article  CAS  PubMed  Google Scholar 

  19. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR (2008) Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 118:294–305

    Article  CAS  PubMed  Google Scholar 

  20. Hinrichs CS, Borman ZA, Cassard L, Gattinoni L, Spolski R, Yu Z, Sanchez-Perez L, Muranski P, Kern SJ, Logun C et al (2009) Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci USA 106:17469–17474

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF (2005) Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol 175:7046–7052

    CAS  PubMed  Google Scholar 

  22. Shen X, Zhou J, Hathcock KS, Robbins P, Powell DJ Jr, Rosenberg SA, Hodes RJ (2007) Persistence of tumor infiltrating lymphocytes in adoptive immunotherapy correlates with telomere length. J Immunother 30:123–129

    Article  CAS  PubMed  Google Scholar 

  23. Smit WM, Rijnbeek M, van Bergen CA, Willemze R, Falkenburg JH (1998) Generation of leukemia-reactive cytotoxic T lymphocytes from HLA-identical donors of patients with chronic myeloid leukemia using modifications of a limiting dilution assay. Bone Marrow Transplant 21:553–560

    Article  CAS  PubMed  Google Scholar 

  24. Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262

    Article  CAS  PubMed  Google Scholar 

  25. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Liénard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini JC, Romero P (1999) High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med 190:705–715

    Article  CAS  PubMed  Google Scholar 

  26. Kausche S, Wehler T, Schnürer E, Lennerz V, Brenner W, Melchior S, Gröne M, Nonn M, Strand S, Meyer R, Ranieri E, Huber C, Falk CS, Herr W (2006) Superior antitumor in vitro responses of allogeneic matched sibling compared with autologous patient CD8+ T cells. Cancer Res 66:11447–11454

    Article  CAS  PubMed  Google Scholar 

  27. Bleakley M, Otterud BE, Richardt JL, Mollerup AD, Hudecek M, Nishida T, Chaney CN, Warren EH, Leppert MF, Riddell SR (2010) Leukemia-associated minor histocompatibility antigen discovery using T cell clones isolated by in vitro stimulation of naive CD8+ T cells. Blood 115:4923–4933

    Article  CAS  PubMed  Google Scholar 

  28. Rezvani K, Barrett AJ (2008) Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol 21:437–453

    Article  CAS  PubMed  Google Scholar 

  29. Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432

    Article  CAS  PubMed  Google Scholar 

  30. Berard M, Brandt K, Bulfone-Paus S, Tough DF (2003) IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 170:5018–5026

    CAS  PubMed  Google Scholar 

  31. Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29:848–862

    Article  CAS  PubMed  Google Scholar 

  32. Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by γc family cytokines. Nat Rev Immunol 9:480–490

    Article  CAS  PubMed  Google Scholar 

  33. Daudt L, Maccario R, Locatelli F, Turin I, Silla L, Montini E, Percivalle E, Giugliani R, Avanzini MA, Moretta A, Montagna D (2008) Interleukin-15 favors the expansion of central memory CD8+ T cells in ex vivo generated, antileukemia human cytotoxic T lymphocyte lines. J Immunother 31:385–393

    Article  CAS  PubMed  Google Scholar 

  34. Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211:81–92

    Article  CAS  PubMed  Google Scholar 

  35. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, Johnston J, Madden K, Xu W, West J et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63

    Article  CAS  PubMed  Google Scholar 

  36. Casey KA, Mescher MF (2007) IL-21 promotes differentiation of naive CD8 T cells to a unique effector phenotype. J Immunol 178:7640–7648

    CAS  PubMed  Google Scholar 

  37. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, Berzofsky JA, Leonard WJ (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148

    Article  CAS  PubMed  Google Scholar 

  38. Kaka AS, Shaffer DR, Hartmeier R, Leen AM, Lu A, Bear A, Rooney CM, Foster AE (2009) Genetic modification of T cells with IL-21 enhances antigen presentation and generation of central memory tumor-specific cytotoxic T-lymphocytes. J Immunother 32:726–736

    Article  CAS  PubMed  Google Scholar 

  39. Pouw N, Treffers-Westerlaken E, Kraan J, Wittink F, ten Hagen T, Verweij J, Debets R (2010) Combination of IL-21 and IL-15 enhances tumour-specific cytotoxicity and cytokine production of TCR-transduced primary T cells. Cancer Immunol Immunother 59:921–931

    Article  CAS  PubMed  Google Scholar 

  40. Huarte E, Fisher J, Turk JM, Mellinger D, Foster C, Wolf B, Meehan KR, Fadul CE, Ernstoff MS (2009) Ex vivo expansion of tumor specific lymphocytes with IL-15 and IL-21 for adoptive immunotherapy in melanoma. Cancer Lett 285:80–88

    Article  CAS  PubMed  Google Scholar 

  41. Hinrichs CS, Gattinoni L, Restifo NP (2006) Programming CD8+ T cells for effective immunotherapy. Curr Opin Immunol 18:363–370

    Article  CAS  PubMed  Google Scholar 

  42. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  CAS  PubMed  Google Scholar 

  43. Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, Klebanoff CA, Rosenberg SA, Leonard WJ, Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111:5326–5333

    Article  CAS  PubMed  Google Scholar 

  44. Ansén S, Butler MO, Berezovskaya A, Murray AP, Stevenson K, Nadler LM, Hirano N (2008) Dissociation of its opposing immunologic effects is critical for the optimization of antitumor CD8+ T-cell responses induced by interleukin 21. Clin Cancer Res 14:6125–6136

    Article  PubMed  Google Scholar 

  45. Alves NL, Arosa FA, van Lier RA (2005) IL-21 sustains CD28 expression on IL-15-activated human naive CD8 T cells. J Immunol 175:755–762

    CAS  PubMed  Google Scholar 

  46. Mora JR, von Andrian UH (2006) T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27:235–243

    Article  CAS  PubMed  Google Scholar 

  47. Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA, Barbui AM, van Egmond HM, Strijbosch MP, Kester MG, Marijt WA, Goulmy E, Willemze R, Falkenburg JH (2004) Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 18:798–808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eva Wagner and Dr. Roland Conradi from Mainz for coordinating leukemia and lymphocyte sampling. We are grateful to Elke Schnürer for her excellent technical assistance. We also thank Dr. Holger Voss and Prof. Dr. Thomas Wölfel, Mainz, for providing LAA and mHag peptides. This work was supported by grant KFO183-TP5 of the Deutsche Forschungsgemeinschaft (DFG) to W.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Distler.

Additional information

W. Herr and E. Distler share senior authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, J., Frey, M., Teschner, D. et al. IL-21-treated naive CD45RA+ CD8+ T cells represent a reliable source for producing leukemia-reactive cytotoxic T lymphocytes with high proliferative potential and early differentiation phenotype. Cancer Immunol Immunother 60, 235–248 (2011). https://doi.org/10.1007/s00262-010-0936-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0936-8

Keywords

Navigation