Skip to main content
Log in

Therapy model for advanced intracerebral B16 mouse melanoma using radiation therapy combined with immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A reproducible therapy model for advanced intracerebral B16 melanoma is reported. Implanted tumors (D0), suppressed by a single 15 Gy radiosurgical dose of 100 kVp X-rays (D8), were further suppressed by a single ip injection of a Treg-depleting mAb given 2 days prior to the initiation (D9) of four weekly then eight bi-monthly sc injections of GMCSF-transfected, mitotically disabled B16 cells. The trends of seven independent experiments were similar to the combined result: The median (days) [SD/total N] of survival went from 15[1.09/62] (no treatment control) to 35.8[8.8/58] (radiation therapy only) to 52.5[13.5/57] (radiation therapy plus immunotherapy). Within 2 weeks after immunization, tumors in mice receiving radiation therapy plus immunotherapy were significantly smaller than tumors in mice treated only with radiosurgery. Splenocytes and lymph node cells from immunized mice showed increased interferon γ production when cultured with syngeneic tumor cells. We suggest that our model will be useful for the development and testing of novel combination therapies for brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walbert T, Gilbert MR (2009) The role of chemotherapy in the treatment of patients with brain metastases from solid tumors. Int J Clin Oncol 14:299–306. doi:10.1007/s10147-009-0916-1

    Article  PubMed  CAS  Google Scholar 

  2. Langley RR, Fidler IJ (2013) The biology of brain metastasis. Clin Chem 59:180–189. doi:10.1373/clinchem.2012.193342

    Article  PubMed  CAS  Google Scholar 

  3. Goulart CR, Mattei TA, Ramina R (2011) Cerebral melanoma metastases: a critical review on diagnostic methods and therapeutic options. ISRN Surg 2011:276908. doi:10.5402/2011/276908

    PubMed  Google Scholar 

  4. Preusser M, Capper D, Ilhan-Mutlu A, Berghoff AS, Birner P, Bartsch R, Marosi C, Zielinski C, Mehta MP, Winkler F, Wick W, von Deimling A (2012) Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol 123:205–222. doi:10.1007/s00401-011-0933-9

    Article  PubMed  CAS  Google Scholar 

  5. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489. doi:10.1038/nature10673

    Article  PubMed  CAS  Google Scholar 

  6. Chi M, Dudek A (2011) Vaccine therapy for metastatic melanoma: systematic review and meta-analysis of clinical trials. Melanoma Res 21:165–174. doi:10.1097/CMR.0b013e328346554d

    Article  PubMed  CAS  Google Scholar 

  7. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Eng J Med 363:711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  Google Scholar 

  8. Weber JS, Amin A, Minor D, Seigel J, Berman D, O'Day SJ (2011) Safety asnd clinical activity of ipilimumab in melanoma patients with brain metastases: retrospective analysis of data from a phase 2 trial. Melanoma Res 21:530–534. doi:10.1097/CMR.0b013e32834d3d88

    Article  PubMed  CAS  Google Scholar 

  9. Rosenberg S (2011) Cell-transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol 8:577–585. doi:10.1038/nrclinonc.2011.116

    Article  PubMed  CAS  Google Scholar 

  10. Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805–812. doi:10.1038/nrc3153

    Article  PubMed  CAS  Google Scholar 

  11. Blank C, Hooijkaas AI, Haanen JB, Schumacher TN (2011) Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol Immunother 60:1359–1371. doi:10.1007/s00262-011-1079-2

    Article  PubMed  Google Scholar 

  12. Fidler IJ (1973) Selection of successive tumor lines for metastasis. Nat New Biol 242:148–149

    PubMed  CAS  Google Scholar 

  13. Smilowitz HM, Weissenberger J, Weis J, Brown JD, O'Neill RJ, Laissue JA (2007) Orthotopic transplantation of v-src expressing glioma cell lines into immunocompetent mice: establishment of a new transplantable in vivo model for malignant gliomas. J. Neurosurg 106:652–659

    Article  PubMed  Google Scholar 

  14. Lowenthal JW, Corthésy P, Tougne C, Lees R, MacDonald HR, Nabholz M (1985) High and low affinity IL2 receptors: analysis by IL2 dissociation rate and reactivity with monoclonal anti-receptor antibody PC61. J Immunol 135:3988–3994

    PubMed  CAS  Google Scholar 

  15. Setiady YY, Coccia JA, Park PU (2010) In vivo depletion of CD4+FoxP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by the FcgammaRIII+ phagocytes. Eur J Immunol 40:780–786. doi:10.1002/eji.200939613

    Article  PubMed  CAS  Google Scholar 

  16. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543

    Article  PubMed  CAS  Google Scholar 

  17. Cranmer LD, Trevor KT, Bandlamuri S, Hersh EM (2005) Rodent models of brain metastases in melanoma. Melanoma Res 15:325–356

    Article  PubMed  Google Scholar 

  18. Weiss E-M, Wunderlich R, Ebel N, Rubner Y, Schlücker E, Meyer-Pittroff R, Ott OJ, Fietkau R, Gaipl US, Frey B (2012) Selected anti-tumor vaccines merit a place in multimodal tumor therapies. Front Oncol 2:132. doi:10.3389/fonc.2012.00132

    Article  PubMed  Google Scholar 

  19. Dranoff G (2012) Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol 12:61–66. doi:10.1038/nri3129

    CAS  Google Scholar 

  20. Fox BA, Schendel DJ, Butterfield LH, Aamdal S, Allison JP, Ascierto PA, Atkins MB, Bartunkova J, Bergmann L, Berinstein N, Bonorino CC, Borden E, Bramson JL, Britten CM, Cao X, Carson WE, Chang AE, Characiejus D, Choudhury AR, Coukos G, de Gruijl T, Dillman RO, Dolstra H, Dranoff G, Durrant LG, Finke JH, Galon J, Gollob JA, Gouttefangeas C, Grizzi F, Guida M, Hakansson L, Hege K, Herberman RB, Hodi FS, Hoos A, Huber C, Hwu P, Imai K, Jaffee EM, Janetzki S, June CH, Kalinski P, Kaufman HL, Kawakami K, Kawakami Y, Keilholtz U, Khleif SN, Kiessling R, Kotlan B, Kroemer G, Lapointe R, Levitsky HI, Lotze MT, Maccalli C, Maio M, Marschner JP, Mastrangelo MJ, Masucci G, Melero I, Nelief C, Murphy WJ, Nelson B, Nicolini A, Nishimura MI, Odunsi K, Ohashi PS, O’Donnell-Tormey J, Old LJ, Ottensmeier C, Papamichail M, Parmiani G, Pawelec G, Proietti E, Qin S, Rees R, Ribas A, Ridolfi R, Ritter G, Rivoltini L, Romero PJ, Salem ML, Scheper RJ, Seliger B, Sharma P, Shiku H, Singh-Jasuja H, Song W, Straten PT, Tahara H, Tian Z, van Der Burg SH, von Hoegen P, Wang E, Welters MJ, Winter H, Withington T, Wolchok JD, Xiao W, Zitvogel L, Zwierzina H, Marincola FM, Gajewski TF, Wigginton JM, Disis ML (2011) Defining the critical hurdles in cancer immunotherapy. J Transl Med 9:214. doi:10.1186/1479-5876-9-214

    Article  PubMed  Google Scholar 

  21. Demaria S, Bhardwaj N, McBride WH, Formenti SC (2005) Combining radiotherapy and immunotherapy: a revived partnership. Int J Rad Oncol Biol Phys 63:655–666. doi:10.1016/j.ijrobp.2005.06.032

    Article  Google Scholar 

  22. Smilowitz HM, Micca PL, Nawrocky MM, Slatkin DN, Tu W, Coderre JA (2000) The combination of boron neutron-capture therapy and immunoprophylaxis for advanced intracerebral gliosarcomas in rats. J Neuro-Oncol 46:231–240

    Article  CAS  Google Scholar 

  23. Smilowitz HM, Coderre JA, Nawrocky MM, Tu W, Pinkerton A, Jahng GH, Gebbers N, Slatkin DN (2002) The combination of X-ray-mediated radiosurgery and gene-mediated immunoprophylaxis for an advanced intracerebral gliosarcoma in rats. J. Neuro-Oncol 57:9–18

    Article  CAS  Google Scholar 

  24. Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. JNCI 105:256–265. doi:10.1093/jnci/djs629

    Article  PubMed  CAS  Google Scholar 

  25. Wheeler CJ, Black KL (2009) DCVax-Brain and DC vaccines in the treatment of GBM. Expert Opin Invest Drugs 18:509–519. doi:10.1517/13543780902841951

    Article  CAS  Google Scholar 

  26. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 17:1603–1615. doi:10.1158/1078-0432.CCR-10-2563

    Article  PubMed  CAS  Google Scholar 

  27. Gibney GT, Forsyth PA, Sondak VK (2012) Melanoma in the brain: biology and therapeutic options. Melanoma Res 22:177–183. doi:10.1097/CMR.0b013e328352dbef

    Article  PubMed  CAS  Google Scholar 

  28. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (Interleukin-2 Receptor α) monoclonal antibody. Cancer Res 59:3128–3133

    PubMed  CAS  Google Scholar 

  29. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  30. Piccirillo CA, Shevach EM (2001) Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 167:1137–1140

    PubMed  CAS  Google Scholar 

  31. Tanaka H, Tanaka J, Kjaergaardf J, Shu S (2002) Depletion of CD4+CD25+ regulatory cells augments the generation of specific immune T cells in tumor draining lymph nodes. J Immunother 25:207–217. doi:10.1097/01.CJI0000015083.20350.82

    Article  PubMed  CAS  Google Scholar 

  32. Maes W, Rosas GG, Verbinnen B (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11:529–542. doi:10.1215/15228517-2009-004

    Article  PubMed  CAS  Google Scholar 

  33. Grauer IM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW, Nierkens S, Adema GJ (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122:1794–1802. doi:10.1002/ijc.23284

    Article  PubMed  CAS  Google Scholar 

  34. Van de Laar L, Coffer PJ, Woltman AM (2012) Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119:3383–3393. doi:10.1182/blood-2011-11-370130

    Article  PubMed  Google Scholar 

  35. Rice JC, Bucy RP (1995) Differences in the degree of depletion, rate of recovery, and their preferential elimination of naive CD4+T cells by anti-CD4 monoclonal antibody (GK1.5) in young and aged mice. J Immunol 154:6644–6654

    PubMed  CAS  Google Scholar 

  36. Zou T, Satake A, Ojha P, Kambayashi T (2011) Cellular therapies supplement: the role of granulocyte macrophage colony stimulating factor and dendritic cells in regulatory T-cell homeostasis and expansion. Transfusion 51:160S–168S. doi:10.1111/j.1537-2995.2011.03379.x

    Article  PubMed  CAS  Google Scholar 

  37. Jacobs JF, Nierkens S, Figdor CG, deVries IJ, Aderma GJ (2012) Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol 13:e32–e42. doi:10.1016/S1470-2045(11)70155-3

    Article  PubMed  CAS  Google Scholar 

  38. Whiteside TL, Schuler P, Schilling B (2012) Induced and natural regulatory T cells in human cancer. Expert Opin Biol Ther 12:1383–1397. doi:10.1517/14712598.2012.707184

    Article  PubMed  CAS  Google Scholar 

  39. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868. doi:10.1182/blood-2004-06-2410

    Article  PubMed  CAS  Google Scholar 

  40. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206:1717–1725. doi:10.1084/jem.20082492

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Daniel N. Slatkin for his advice and the technical support he provided for some of these experiments.

Conflict of interest

The authors declare that they have no conflict of interest in any form with respect to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry M. Smilowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smilowitz, H.M., Sasso, D., Lee, E.W. et al. Therapy model for advanced intracerebral B16 mouse melanoma using radiation therapy combined with immunotherapy. Cancer Immunol Immunother 62, 1187–1197 (2013). https://doi.org/10.1007/s00262-013-1423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1423-9

Keywords

Navigation