Skip to main content
Log in

Combination of targeted therapy and immunotherapy in melanoma

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The treatment of human melanoma has progressed markedly in recent years. Building on the observation that immune recognition is a frequent event in melanoma, a series of immunotherapeutic approaches have been evaluated in clinical trials, culminating in the first phase III study improving overall survival of melanoma patients since 20 years. However, the response rates seen upon immunotherapeutic interventions such as anti-CTLA4 treatment are often low. Furthermore, clinical responses can take several weeks to develop, during which time stage IV melanoma patients often deteriorate. Recent advances in our understanding of the genetic lesions in human melanoma now also allow the specific targeting of the signaling pathway alterations in this disease. Such targeted therapies can lead to high response rates, although the duration of these responses is thus far relatively short. We suggest that the combination of immuno and targeted therapy offers potential for synergy for both conceptual and practical reasons. In this review, we will discuss the potential and possible limitations for such combination therapy, and we describe the most promising combinations of targeted therapy and immunotherapy that can be tested in the clinic in the coming years. The concept of induction therapy by small molecule administration and consolidation by immunotherapeutics also has potential for the treatment of other human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Korn EL, Liu PY, Lee SJ, Chapman JA, Niedzwiecki D, Suman VJ, Moon J, Sondak VK, Atkins MB, Eisenhauer EA, Parulekar W, Markovic SN, Saxman S, Kirkwood JM (2008) Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol 26(4):527–534. doi:10.1200/JCO.2007.12.7837

    Article  PubMed  Google Scholar 

  2. Lens MB, Dawes M (2004) Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br J Dermatol 150(2):179–185

    Article  PubMed  CAS  Google Scholar 

  3. Agarwala SS (2009) Current systemic therapy for metastatic melanoma. Expert Rev Anticancer Ther 9(5):587–595. doi:10.1586/era.09.25

    Article  PubMed  CAS  Google Scholar 

  4. Eggermont AM (2009) Immunotherapy: vaccine trials in melanoma—time for reflection. Nature Rev 6(5):256–258

    CAS  Google Scholar 

  5. Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40(12):1825–1836. doi:10.1016/j.ejca.2004.04.030

    Article  PubMed  CAS  Google Scholar 

  6. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353(20):2135–2147. doi:10.1056/NEJMoa050092

    Article  PubMed  CAS  Google Scholar 

  7. Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340–4346. doi:10.1200/JCO.2006.06.2984

    Article  PubMed  CAS  Google Scholar 

  8. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, Simpson EM, Barsh GS, Bastian BC (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602. doi:10.1038/nature07586

    Article  PubMed  Google Scholar 

  9. Sharpless E, Chin L (2003) The INK4a/ARF locus and melanoma. Oncogene 22(20):3092–3098. doi:10.1038/sj.onc.1206461

    Article  PubMed  CAS  Google Scholar 

  10. Ibrahim N, Haluska FG (2009) Molecular pathogenesis of cutaneous melanocytic neoplasms. Annu Rev Pathol 4:551–579. doi:10.1146/annurev.pathol.3.121806.151541

    Article  PubMed  CAS  Google Scholar 

  11. Smalley KS (2009) Understanding melanoma signaling networks as the basis for molecular targeted therapy. J Invest Dermatol 130(1):28–37. doi:10.1038/jid.2009.177

    Article  Google Scholar 

  12. Gast A, Scherer D, Chen B, Bloethner S, Melchert S, Sucker A, Hemminki K, Schadendorf D, Kumar R (2010) Somatic alterations in the melanoma genome: a high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer 49(8):733–745. doi:10.1002/gcc.20785

    Article  PubMed  CAS  Google Scholar 

  13. Eisen T, Ahmad T, Flaherty KT, Gore M, Kaye S, Marais R, Gibbens I, Hackett S, James M, Schuchter LM, Nathanson KL, Xia C, Simantov R, Schwartz B, Poulin-Costello M, O’Dwyer PJ, Ratain MJ (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br J Cancer 95(5):581–586. doi:10.1038/sj.bjc.6603291

    Google Scholar 

  14. Hauschild A, Agarwala SS, Trefzer U, Hogg D, Robert C, Hersey P, Eggermont A, Grabbe S, Gonzalez R, Gille J, Peschel C, Schadendorf D, Garbe C, O’Day S, Daud A, White JM, Xia C, Patel K, Kirkwood JM, Keilholz U (2009) Results of a phase III, randomized, placebo-controlled study of sorafenib in combination with carboplatin and paclitaxel as second-line treatment in patients with unresectable stage III or stage IV melanoma. J Clin Oncol 27(17):2823–2830. doi:10.1200/JCO.2007.15.7636

    Article  PubMed  CAS  Google Scholar 

  15. Dummer R (2008) AZD6244 (Arry-a428896) versus temozolomide (TMZ) in patients with advanced melanoma: an open-label, randomized, multicenter, phase II study. J Clin Oncol 26(abstract 9033)

  16. Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105(8):3041–3046. doi:10.1073/pnas.0711741105

    Article  PubMed  CAS  Google Scholar 

  17. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363(9):809–819. doi:10.1056/NEJMoa1002011

    Article  PubMed  CAS  Google Scholar 

  18. Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D’Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M (2010) Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18(6):683–695. doi:10.1016/j.ccr.2010.11.023

    Article  PubMed  CAS  Google Scholar 

  19. Paraiso KH, Fedorenko IV, Cantini LP, Munko AC, Hall M, Sondak VK, Messina JL, Flaherty KT, Smalley KS (2010) Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br J Cancer 102(12):1724–1730. doi:10.1038/sj.bjc.6605714

    Article  PubMed  CAS  Google Scholar 

  20. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J, Caponigro G, Hieronymus H, Murray RR, Salehi-Ashtiani K, Hill DE, Vidal M, Zhao JJ, Yang X, Alkan O, Kim S, Harris JL, Wilson CJ, Myer VE, Finan PM, Root DE, Roberts TM, Golub T, Flaherty KT, Dummer R, Weber BL, Sellers WR, Schlegel R, Wargo JA, Hahn WC, Garraway LA (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468(7326):968–972

    Article  PubMed  CAS  Google Scholar 

  21. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468(7326):973–977

    Article  PubMed  CAS  Google Scholar 

  22. Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P, Zhang XD (2010) MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res

  23. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, Hussain J, Reis-Filho JS, Springer CJ, Pritchard C, Marais R (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 140(2):209–221

    Article  PubMed  CAS  Google Scholar 

  24. Montagut C, Sharma SV, Shioda T, McDermott U, Ulman M, Ulkus LE, Dias-Santagata D, Stubbs H, Lee DY, Singh A, Drew L, Haber DA, Settleman J (2008) Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. Cancer Res 68(12):4853–4861

    Article  PubMed  CAS  Google Scholar 

  25. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, West BL, Powell B, Shellooe R, Marimuthu A, Nguyen H, Zhang KY, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D’Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, Chapman PB, Flaherty KT, Xu X, Nathanson KL, Nolop K (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467(7315):596–599

    Article  PubMed  CAS  Google Scholar 

  26. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, Meyerson M, Garraway LA (2011) Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. doi:10.1200/JCO.2010.33.2312

  27. Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R (1999) Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol 19(10):7203–7215

    PubMed  CAS  Google Scholar 

  28. Smalley KS, Sondak VK (2010) Melanoma—an unlikely poster child for personalized cancer therapy. N Engl J Med 363(9):876–878

    Article  PubMed  CAS  Google Scholar 

  29. Kalialis LV, Drzewiecki KT, Klyver H (2009) Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res 19(5):275–282. doi:10.1097/CMR.0b013e32832eabd5

    Article  PubMed  Google Scholar 

  30. Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, Castermans E, Thor Straten P, Blank C, Haanen JB, Heemskerk MH, Schumacher TN (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6(7):520–526. doi:10.1038/nmeth.1345

    Article  PubMed  CAS  Google Scholar 

  31. Lui VK, Karpuchas J, Dent PB, McCulloch PB, Blajchman MA (1975) Cellular immunocompetence in melanoma: effect of extent of disease and immunotherapy. Br J Cancer 32(3):323–330

    Article  PubMed  CAS  Google Scholar 

  32. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21(2):233–240

    Article  PubMed  CAS  Google Scholar 

  33. Alegre ML, Shiels H, Thompson CB, Gajewski TF (1998) Expression and function of CTLA-4 in Th1 and Th2 cells. J Immunol 161(7):3347–3356

    PubMed  CAS  Google Scholar 

  34. Munn DH, Sharma MD, Mellor AL (2004) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J Immunol 172(7):4100–4110

    PubMed  CAS  Google Scholar 

  35. Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229(1):12–26. doi:10.1111/j.1600-065X.2009.00770.x

    Article  PubMed  CAS  Google Scholar 

  36. Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, Burg MB, Allison JP (1997) Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 94(15):8099–8103

    Article  PubMed  CAS  Google Scholar 

  37. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736

    Article  PubMed  CAS  Google Scholar 

  38. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466

    Article  PubMed  CAS  Google Scholar 

  39. Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF, Redman B, Pavlov D, Bulanhagui C, Bozon VA, Gomez-Navarro J, Ribas A (2009) Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol 27(7):1075–1081. doi:10.1200/JCO.2008.19.2435

    Article  PubMed  CAS  Google Scholar 

  40. Weber J (2007) Review: anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist 12(7):864–872. doi:10.1634/theoncologist.12-7-864

    Article  PubMed  CAS  Google Scholar 

  41. Lutzky JWJ, Hamid O et al (2009) Association between immune-related adverse events (irAEs) and disease control or overall survival in patients (pts) with advanced melanoma treated with 10 mg/kg ipilimumab in three phase II clinical trials. J Clin Oncol 27: Suppl; abstr.; 9034

    Google Scholar 

  42. Di Giacomo AM, Danielli R, Calabro L, Bertocci E, Nannicini C, Giannarelli D, Balestrazzi A, Vigni F, Riversi V, Miracco C, Biagioli M, Altomonte M, Maio M (2010) Ipilimumab experience in heavily pretreated patients with melanoma in an expanded access program at the University Hospital of Siena (Italy). Cancer Immunol Immunother. doi:10.1007/s00262-010-0958-2

  43. Ku GY, Yuan J, Page DB, Schroeder SE, Panageas KS, Carvajal RD, Chapman PB, Schwartz GK, Allison JP, Wolchok JD (2010) Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer 116(7):1767–1775. doi:10.1002/cncr.24951

    Article  PubMed  CAS  Google Scholar 

  44. Hamid O, Chasalow SD, Tsuchihashi Z, Alaparthy S, Galbraith S, Berman D (2009) Association of baseline and on-study tumor biopsy markers with clinical activity in patients (pts) with advanced melanoma treated with ipilimumab. J Clin Oncol 27:15s (suppl; abstr 9008)

    Google Scholar 

  45. Di Giacomo AM, Danielli R, Guidoboni M, Calabro L, Carlucci D, Miracco C, Volterrani L, Mazzei MA, Biagioli M, Altomonte M, Maio M (2009) Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother 58(8):1297–1306. doi:10.1007/s00262-008-0642-y

    Article  PubMed  CAS  Google Scholar 

  46. Hersh EM, O’Day SJ, Powderly J, Khan KD, Pavlick AC, Cranmer LD, Samlowski WE, Nichol GM, Yellin MJ, Weber JS (2010) A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-naive patients with advanced melanoma. Invest New Drugs. doi:10.1007/s10637-009-9376-8

  47. Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL, Kammula US, Royal RE, Haworth LR, Levy C, Kleiner D, Mavroukakis SA, Yellin M, Rosenberg SA (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12(12):1005–1016

    Article  PubMed  Google Scholar 

  48. Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125. doi:10.1111/j.1600-065X.2009.00767.x

    Article  PubMed  CAS  Google Scholar 

  49. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64(3):1140–1145

    Article  PubMed  CAS  Google Scholar 

  50. Zhang L, Gajewski TF, Kline J (2009) PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 114(8):1545–1552. doi:10.1182/blood-2009-03-206672

    Article  PubMed  CAS  Google Scholar 

  51. Iwai Y, Terawaki S, Honjo T (2004) PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol

  52. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    PubMed  CAS  Google Scholar 

  53. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, Koren-Michowitz M, Shimoni A, Nagler A (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051

    Article  PubMed  CAS  Google Scholar 

  54. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, Stankevich E, Pons A, Salay TM, McMiller TL, Gilson MM, Wang C, Selby M, Taube JM, Anders R, Chen L, Korman AJ, Pardoll DM, Lowy I, Topalian SL (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175. doi:10.1200/JCO.2009.26.7609

    Article  PubMed  CAS  Google Scholar 

  55. M. Sznol JDP, Smith DC, Brahmer JR, Drake CG, McDermott DF, Lawrence DP, Wolchok JD, Topalian SL, Lowy I (2010) Safety and antitumor activity of biweekly MDX-1106 (Anti-PD-1, BMS-936558/ONO-4538) in patients with advanced refractory malignancies. J Clin Oncol 28:15s (suppl; abstr 2506)

  56. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, Murphy TL, Russell JH, Allison JP, Murphy KM (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4(7):670–679

    Article  PubMed  CAS  Google Scholar 

  57. Derre L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE (2010) BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 120(1):157–167. doi:10.1172/JCI40070

    Article  PubMed  CAS  Google Scholar 

  58. Petermann KB, Rozenberg GI, Zedek D, Groben P, McKinnon K, Buehler C, Kim WY, Shields JM, Penland S, Bear JE, Thomas NE, Serody JS, Sharpless NE (2007) CD200 is induced by ERK and is a potential therapeutic target in melanoma. J Clin Invest 117(12):3922–3929. doi:10.1172/JCI32163

    PubMed  CAS  Google Scholar 

  59. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A (2008) Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 57(7):987–996. doi:10.1007/s00262-007-0429-6

    Article  PubMed  CAS  Google Scholar 

  60. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771

    Article  PubMed  CAS  Google Scholar 

  61. Sznol MFSH, Margolin K, McDermott DF, Ernstoff MS, Kirkwood JM, Wojtaszek C, Feltquate D, Logan T (2008) Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA). J Clin Oncol 26 (May 20 suppl):abstr 3007

  62. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68. doi:10.1146/annurev.immunol.23.021704.115839

    Article  PubMed  CAS  Google Scholar 

  63. Lee J, Lee EN, Kim EY, Lee HJ, Park HJ, Sun CL, Lee SK, Joh JW, Lee KW, Kwon GY, Kim SJ (2005) 4-1BB promotes long-term survival in skin allografts treated with anti-CD45RB and anti-CD40L monoclonal antibodies. Transplant Proc 37(1):123–125. doi:10.1016/j.transproceed.2005.01.016

    Article  PubMed  CAS  Google Scholar 

  64. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9(4):271–285. doi:10.1038/nri2526

    Article  PubMed  CAS  Google Scholar 

  65. Evans DE, Prell RA, Thalhofer CJ, Hurwitz AA, Weinberg AD (2001) Engagement of OX40 enhances antigen-specific CD4(+) T cell mobilization/memory development and humoral immunity: comparison of alphaOX-40 with alphaCTLA-4. J Immunol 167(12):6804–6811

    PubMed  CAS  Google Scholar 

  66. Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M, Li Y, Puri S, Poehlein CH, Morris N, Kovacsovics-Bankowski M, Moudgil T, Twitty C, Walker EB, Hu HM, Urba WJ, Weinberg AD, Curti B, Fox BA Signaling through OX40 enhances antitumor immunity. Semin Oncol 37(5):524–532. doi:10.1053/j.seminoncol.2010.09.013

  67. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ, Gallagher M, Kramer A, Green SJ, O’Dwyer PJ, Running KL, Huhn RD, Antonia SJ (2007) Clinical activity and immune modulation in cancer patients treated with CP-870, 893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7):876–883. doi:10.1200/JCO.2006.08.3311

    Article  PubMed  CAS  Google Scholar 

  68. Wolchok JD, Yang AS, Weber JS (2010) Immune regulatory antibodies: are they the next advance? Cancer J 16(4):311–317. doi:10.1097/PPO.0b013e3181eb3381

    Article  PubMed  CAS  Google Scholar 

  69. Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G (2010) Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 16(12):3100–3104. doi:10.1158/1078-0432.CCR-09-2891

    Article  PubMed  CAS  Google Scholar 

  70. Giampietri A, Bonmassar A, Puccetti P, Circolo A, Goldin A, Bonmassar E (1981) Drug-mediated increase of tumor immunogenicity in vivo for a new approach to experimental cancer immunotherapy. Cancer Res 41(2):681–687

    PubMed  CAS  Google Scholar 

  71. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L (2011) Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol. doi:10.1007/s00281-011-0245-0

  72. den Brok MH, Sutmuller RP, Nierkens S, Bennink EJ, Frielink C, Toonen LW, Boerman OC, Figdor CG, Ruers TJ, Adema GJ (2006) Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 95(7):896–905. doi:10.1038/sj.bjc.6603341

    Article  Google Scholar 

  73. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388. doi:10.1158/1078-0432.CCR-09-0265

    Article  PubMed  CAS  Google Scholar 

  74. Rakhra K, Bachireddy P, Zabuawala T, Zeiser R, Xu L, Kopelman A, Fan AC, Yang Q, Braunstein L, Crosby E, Ryeom S, Felsher DW (2010) CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18(5):485–498. doi:10.1016/j.ccr.2010.10.002

    Article  PubMed  CAS  Google Scholar 

  75. Denardo D, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Hope SR, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Dis 1(1):OF52–OF65

    Google Scholar 

  76. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns MP, Greten TF (2003) Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 103(2):205–211. doi:10.1002/ijc.10777

    Article  PubMed  CAS  Google Scholar 

  77. Lohmann C, Muschaweckh A, Kirschnek S, Jennen L, Wagner H, Hacker G (2009) Induction of tumor cell apoptosis or necrosis by conditional expression of cell death proteins: analysis of cell death pathways and in vitro immune stimulatory potential. J Immunol 182(8):4538–4546. doi:10.4049/jimmunol.0803989

    Article  PubMed  CAS  Google Scholar 

  78. Hadrup SR, Toebes M, Rodenko B, Bakker AH, Egan DA, Ovaa H, Schumacher TN (2009) High-throughput T-cell epitope discovery through MHC peptide exchange. Methods Mol Biol 524:383–405. doi:10.1007/978-1-59745-450-6_28

    Article  PubMed  CAS  Google Scholar 

  79. Boni A, Cogdill AP, Dang P, Udayakumar D, Njauw CN, Sloss CM, Ferrone CR, Flaherty KT, Lawrence DP, Fisher DE, Tsao H, Wargo JA (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70(13):5213–5219. doi:10.1158/0008-5472.CAN-10-0118

    Article  PubMed  CAS  Google Scholar 

  80. Comin-Anduix B, Chodon T, Sazegar H, Matsunaga D, Mock S, Jalil J, Escuin-Ordinas H, Chmielowski B, Koya RC, Ribas A (2010) The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin Cancer Res 16(24):6040–6048

    Article  PubMed  CAS  Google Scholar 

  81. Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P, Zhang XD (2011) MEK-Independent Survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res. doi:10.1158/1078-0432.CCR-10-2225

  82. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Annu Rev Immunol 27:591–619. doi:10.1146/annurev.immunol.021908.132706

    Article  PubMed  CAS  Google Scholar 

  83. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107(9):4275–4280. doi:10.1073/pnas.0915174107

    Article  PubMed  CAS  Google Scholar 

  84. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr, You MJ, DePinho RA, McMahon M, Bosenberg M (2009) Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 41(5):544–552. doi:10.1038/ng.356

    Article  PubMed  CAS  Google Scholar 

  85. Markel G, Cohen-Sinai T, Besser MJ, Oved K, Itzhaki O, Seidman R, Fridman E, Treves AJ, Keisari Y, Dotan Z, Ramon J, Schachter J (2009) Preclinical evaluation of adoptive cell therapy for patients with metastatic renal cell carcinoma. Anticancer Res 29(1):145–154

    PubMed  CAS  Google Scholar 

  86. Flaherty KT, McArthur G (2010) BRAF, a target in melanoma: implications for solid tumor drug development. Cancer 116(21):4902–4913. doi:10.1002/cncr.25261

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian U. Blank or Ton N. Schumacher.

Additional information

We would like to thank Daniel Peeper, NKI-AVL, Amsterdam, for valuable suggestions and discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blank, C.U., Hooijkaas, A.I., Haanen, J.B. et al. Combination of targeted therapy and immunotherapy in melanoma. Cancer Immunol Immunother 60, 1359–1371 (2011). https://doi.org/10.1007/s00262-011-1079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1079-2

Keywords

Navigation