Skip to main content

Advertisement

Log in

Impaired migration of IgA-secreting cells to colon adenocarcinomas

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Local inflammation is a strong risk factor for the development of gastrointestinal adenocarcinomas. Mucosal regulatory T cells and IgA-secreting cells both contribute to reduce inflammatory responses, and their recruitment to tissues is dependent on local production of chemokines. More specifically, IgA-secreting cells are recruited to mucosal tissues by CCL28 signalling through CCR10. Here, we examined the recruitment of IgA-secreting plasma cells to tumor-associated mucosa in patients suffering from colon adenocarcinoma. Flow cytometric analyses of single cell suspensions from tumor-associated and unaffected colon mucosa showed a marked decrease in CD19+CD38highIgA+ plasmablasts in the tumor-associated mucosa, while the total frequencies of B and T cells were similar. This finding was confirmed in ELISPOT assays, demonstrating a 64 % reduction in the frequencies of IgA-secreting cells among cells from the tumor-associated mucosa. The few IgA+ plasmablasts present in the tumor did not express CCR10, and functional migration assays demonstrated that IgA-secreting cells from tumor-associated mucosa did not migrate in response to CCL28. Taken together, our results show an impaired migration of IgA-secreting cells to colon tumors, presumably caused by a decreased production of CCL28 in the tumor. The lack of local IgA antibodies may lead to impaired barrier function and increased bacterial colonization, driving further inflammatory responses and promoting tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liang PS, Chen TY, Giovannucci E (2009) Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer 124:2406–2415. doi:10.1002/ijc.24191

    Article  PubMed  CAS  Google Scholar 

  2. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140:1807–1816

    Article  PubMed  CAS  Google Scholar 

  3. Lund EK, Belshaw NJ, Elliott GO, Johnson IT (2011) Recent advances in understanding the role of diet and obesity in the development of colorectal cancer. Proc Nutr Soc 70:194–204

    Article  PubMed  CAS  Google Scholar 

  4. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6:e16393. doi:10.1371/journal.pone.0016393

    Article  PubMed  CAS  Google Scholar 

  5. Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L (2012) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 6:320–329. doi:10.1038/ismej.2011.109

    Article  PubMed  CAS  Google Scholar 

  6. Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP, Meade TW (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376:1741–1750

    Article  PubMed  CAS  Google Scholar 

  7. Liao X, Lochhead P, Nishihara R et al (2012) Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med 367:1596–1606. doi:10.1056/NEJMoa1207756

    Article  PubMed  CAS  Google Scholar 

  8. Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22

    Article  PubMed  CAS  Google Scholar 

  9. Quiding-Jarbrink M, Nordstrom I, Granstrom G, Kilander A, Jertborn M, Butcher EC, Lazarovits AI, Holmgren J, Czerkinsky C (1997) Differential expression of tissue-specific adhesion molecules on human circulating antibody-forming cells after systemic, enteric, and nasal immunizations. A molecular basis for the compartmentalization of effector B cell responses. J Clin Invest 99:1281–1286. doi:10.1172/JCI119286

    Article  PubMed  CAS  Google Scholar 

  10. Kantele A, Kantele JM, Savilahti E, Westerholm M, Arvilommi H, Lazarovits A, Butcher EC, Makela PH (1997) Homing potentials of circulating lymphocytes in humans depend on the site of activation: oral, but not parenteral, typhoid vaccination induces circulating antibody-secreting cells that all bear homing receptors directing them to the gut. J Immunol 158:574–579

    PubMed  CAS  Google Scholar 

  11. Briskin MJ, Rott L, Butcher EC (1996) Structural requirements for mucosal vascular addressin binding to its lymphocyte receptor alpha 4 beta 7. Common themes among integrin-Ig family interactions. J Immunol 156:719–726

    PubMed  CAS  Google Scholar 

  12. Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D, Bowman EP, Butcher EC (2003) CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest 111:1001–1010. doi:10.1172/JCI17244

    PubMed  CAS  Google Scholar 

  13. Lazarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, Butcher EC (2003) A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol 170:3799–3805

    PubMed  CAS  Google Scholar 

  14. Pan J, Kunkel EJ, Gosslar U et al (2000) A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol 165:2943–2949

    PubMed  CAS  Google Scholar 

  15. Wang W, Soto H, Oldham ER et al (2000) Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 275:22313–22323. doi:10.1074/jbc.M001461200

    Article  PubMed  CAS  Google Scholar 

  16. Sundstrom P, Lundin SB, Nilsson LA, Quiding-Jarbrink M (2008) Human IgA-secreting cells induced by intestinal, but not systemic, immunization respond to CCL25 (TECK) and CCL28 (MEC). Eur J Immunol 38:3327–3338. doi:10.1002/eji.200838506

    Article  PubMed  Google Scholar 

  17. Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC (2001) CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 194:1541–1547

    Article  PubMed  CAS  Google Scholar 

  18. Pasquier B, Launay P, Kanamaru Y et al (2005) Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 22:31–42

    PubMed  CAS  Google Scholar 

  19. Staff C, Magnusson CG, Hojjat-Farsangi M, Mosolits S, Liljefors M, Frodin JE, Wahren B, Mellstedt H, Ullenhag GJ (2012) Induction of IgM, IgA and IgE antibodies in colorectal cancer patients vaccinated with a recombinant CEA protein. J Clin Immunol 32:855–865. doi:10.1007/s10875-012-9662-7

    Article  PubMed  CAS  Google Scholar 

  20. Valerius T, Stockmeyer B, van Spriel AB et al (1997) FcalphaRI (CD89) as a novel trigger molecule for bi-specific antibody therapy. Blood 90:4485–4492

    PubMed  CAS  Google Scholar 

  21. Huls G, Heijnen IA, Cuomo E, van der Linden J, Boel E, van de Winkel JG, Logtenberg T (1999) Antitumor immune effector mechanisms recruited by phage display-derived fully human IgG1 and IgA1 monoclonal antibodies. Cancer Res 59:5778–5784

    PubMed  CAS  Google Scholar 

  22. Lohse S, Derer S, Beyer T, Klausz K, Peipp M, Leusen JH, van de Winkel JG, Dechant M, Valerius T (2011) Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol 186:3770–3778. doi:10.4049/jimmunol.1003082

    Article  PubMed  CAS  Google Scholar 

  23. Svensson H, Olofsson V, Lundin S, Yakkala C, Bjorck S, Borjesson L, Gustavsson B, Quiding-Jarbrink M (2012) Accumulation of CCR4(+)CTLA-4 FOXP3(+)CD25(hi) regulatory T cells in colon adenocarcinomas correlate to reduced activation of conventional T cells. PLoS ONE 7:e30695. doi:10.1371/journal.pone.0030695

    Article  PubMed  CAS  Google Scholar 

  24. Dimberg J, Hugander A, Wagsater D (2006) Protein expression of the chemokine, CCL28, in human colorectal cancer. Int J Oncol 28:315–319

    PubMed  CAS  Google Scholar 

  25. Rognum TO, Brandtzaeg P, Orjasaeter H, Elgjo K, Hognestad J (1980) Immunohistochemical study of secretory component, secretory IgA and carcinoembryonic antigen in large bowel carcinomas. Pathol Res Pract 170:126–145

    Article  PubMed  CAS  Google Scholar 

  26. Koretz K, Schlag P, Quentmeier A, Moller P (1994) Evaluation of the secretory component as a prognostic variable in colorectal carcinoma. Int J Cancer 57:365–370

    Article  PubMed  CAS  Google Scholar 

  27. Chalkias A, Nikotian G, Koutsovasilis A, Bramis J, Manouras A, Mystrioti D, Katergiannakis V (2011) Patients with colorectal cancer are characterized by increased concentration of fecal hb-hp complex, myeloperoxidase, and secretory IgA. Am J Clin Oncol 34:561–566. doi:10.1097/COC.0b013e3181f9457e

    Article  PubMed  CAS  Google Scholar 

  28. Lundgren A, Stromberg E, Sjoling A et al (2005) Mucosal FOXP3-expressing CD4 + CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect Immun 73:523–531

    Article  PubMed  CAS  Google Scholar 

  29. Hansson M, Hermansson M, Svensson H, Elfvin A, Hansson LE, Johnsson E, Sjoling A, Quiding-Jarbrink M (2008) CCL28 is increased in human Helicobacter pylori-induced gastritis and mediates recruitment of gastric immunoglobulin A-secreting cells. Infect Immun 76:3304–3311

    Article  PubMed  CAS  Google Scholar 

  30. Czerkinsky C, Moldoveanu Z, Mestecky J, Nilsson LA, Ouchterlony O (1988) A novel two colour ELISPOT assay. I. Simultaneous detection of distinct types of antibody-secreting cells. J Immunol Methods 115:31–37

    Article  PubMed  CAS  Google Scholar 

  31. Mattsson A, Lonroth H, Quiding-Jarbrink M, Svennerholm AM (1998) Induction of B cell responses in the stomach of Helicobacter pylori- infected subjects after oral cholera vaccination. J Clin Invest 102:51–56. doi:10.1172/JCI22

    Article  PubMed  CAS  Google Scholar 

  32. Bjerke K, Brandtzaeg P, Rognum TO (1986) Distribution of immunoglobulin producing cells is different in normal human appendix and colon mucosa. Gut 27:667–674

    Article  PubMed  CAS  Google Scholar 

  33. Jertborn M, Nordstrom I, Kilander A, Czerkinsky C, Holmgren J (2001) Local and systemic immune responses to rectal administration of recombinant cholera toxin B subunit in humans. Infect Immun 69:4125–4128. doi:10.1128/IAI.69.6.4125-4128.2001

    Article  PubMed  CAS  Google Scholar 

  34. Quiding-Jarbrink M, Sundstrom P, Lundgren A et al (2009) Decreased IgA antibody production in the stomach of gastric adenocarcinoma patients. Clin Immunol 131:463–471. doi:10.1016/j.clim.2009.01.010

    Article  PubMed  Google Scholar 

  35. Jones SL, Pihl E, Cuthbertson AM, Hughes ES, Johnson WR, Rollo AJ (1983) Immunoglobulins intrinsic to colorectal carcinoma: an unfavourable prognostic association with IgM. J Natl Cancer Inst 71:469–472

    PubMed  CAS  Google Scholar 

  36. Svennevig JL, Lunde OC, Holter J (1982) In situ analysis of the inflammatory cell infiltrates in colon carcinomas and in the normal colon wall. Acta Pathol Microbiol Immunol Scand A 90:131–137

    PubMed  CAS  Google Scholar 

  37. Johansson C, Ahlstedt I, Furubacka S, Johnsson E, Agace WW, Quiding-Jarbrink M (2005) Differential expression of chemokine receptors on human IgA+ and IgG + B cells. Clin Exp Immunol 141:279–287. doi:10.1111/j.1365-2249.2005.02843.x

    Article  PubMed  CAS  Google Scholar 

  38. Ghadjar P, Rubie C, Aebersold DM, Keilholz U (2009) The chemokine CCL20 and its receptor CCR6 in human malignancy with focus on colorectal cancer. International journal of cancer. J Int du Cancer 125:741–745. doi:10.1002/ijc.24468

    Article  CAS  Google Scholar 

  39. Ogawa H, Iimura M, Eckmann L, Kagnoff MF (2004) Regulated production of the chemokine CCL28 in human colon epithelium. Am J Physiol Gastrointest Liver Physiol 287:G1062–G1069. doi:10.1152/ajpgi.00162.2004

    Article  PubMed  CAS  Google Scholar 

  40. O’Gorman MT, Jatoi NA, Lane SJ, Mahon BP (2005) IL-1beta and TNF-alpha induce increased expression of CCL28 by airway epithelial cells via an NFkappaB-dependent pathway. Cell Immunol 238:87–96. doi:10.1016/j.cellimm.2006.02.003

    Article  PubMed  Google Scholar 

  41. Facciabene A, Peng X, Hagemann IS et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230. doi:10.1038/nature10169

    Article  PubMed  CAS  Google Scholar 

  42. Mickanin CS, Bhatia U, Labow M (2001) Identification of a novel beta-chemokine, MEC, down-regulated in primary breast tumors. Int J Oncol 18:939–944

    PubMed  CAS  Google Scholar 

  43. Liu GX, Lan J, Sun Y, Hu YJ, Jiang GS (2012) Expression of the chemokine CCL28 in pleomorphic adenoma and adenolymphoma of the human salivary glands. Exp Ther Med 4:65–69. doi:10.3892/etm.2012.544

    PubMed  CAS  Google Scholar 

  44. Hieshima K, Ohtani H, Shibano M et al (2003) CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol 170:1452–1461

    PubMed  CAS  Google Scholar 

  45. Le Gouvello S, Bastuji-Garin S, Aloulou N et al (2008) High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut 57:772–779. doi:10.1136/gut.2007.123794

    Article  PubMed  Google Scholar 

  46. Tosolini M, Kirilovsky A, Mlecnik B et al (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 71:1263–1271. doi:10.1158/0008-5472.CAN-10-2907

    Article  PubMed  CAS  Google Scholar 

  47. Chae WJ, Gibson TF, Zelterman D, Hao L, Henegariu O, Bothwell AL (2010) Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci USA 107:5540–5544. doi:10.1073/pnas.0912675107

    Article  PubMed  CAS  Google Scholar 

  48. Ladoire S, Martin F, Ghiringhelli F (2011) Prognostic role of FOXP3 + regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immun Immunother 60:909–918. doi:10.1007/s00262-011-1046-y

    Article  CAS  Google Scholar 

  49. Frey DM, Droeser RA, Viehl CT et al (2010) High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 126:2635–2643. doi:10.1002/ijc.24989

    PubMed  CAS  Google Scholar 

  50. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3 + T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192. doi:10.1200/JCO.2008.18.7229

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all patients who participated in the study, and Hillevi Björkqvist and Ann-Louise Helminnen for valuable help with collection of clinical samples. The study was supported by grants from the Swedish Research Council, The Swedish Cancer Foundation, The Sahlgrenska University Hospital, Inga-Britt and Arne Lundberg’s Foundation, Professor Nanna Svartz’s Foundation, Ruth and Richard Julin’s Foundation, and the Swedish Medical Association.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Quiding-Järbrink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthuswamy, R.V., Sundström, P., Börjesson, L. et al. Impaired migration of IgA-secreting cells to colon adenocarcinomas. Cancer Immunol Immunother 62, 989–997 (2013). https://doi.org/10.1007/s00262-013-1410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1410-1

Keywords

Navigation