Skip to main content

Advertisement

Log in

Sensitivity of a novel model of mammary cancer stem cell-like cells to TNF-related death pathways

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSC) are resistant to radiation and chemotherapy and play a significant role in cancer recurrence and metastatic disease. It is therefore important to identify alternative strategies, such as immunotherapies that can be used to control this refractory population. A CD44+CD24−/low subpopulation of cells within the B6 PyMT-MMTV transgenic mouse-derived AT-3 mammary carcinoma cell line was identified, which had CSC-like characteristics, including pluripotency and a resistance to chemo- and radiotherapy. Therefore, unlike xenograph models that require immunocompromised settings, this novel system may provide a means to study immune-mediated responses against CSC-like cells. The immunobiology of the AT-3 CSC-like cell population was studied by their surface molecule expression profile and their sensitivity to specified cell death pathways. Comparable levels of Rae-1, CD155, CD54 and higher levels of Fas and DR5 were expressed on the AT-3 CSC-like cells compared to non-CSC-like tumor cells. Expression correlated with an in vitro sensitivity to cell death by NK cells or through the ligation of the death receptors (Fas or DR5), by their ligands or anti-Fas and anti-DR5 mAbs. Indeed, compared to the rest of the AT-3 tumor cells, the CD44+CD24−/low subpopulation of cells were more sensitive to both Fas- and TRAIL-mediated cell death pathways. Therefore, despite the refractory nature of CSC to other conventional therapies, these CSC-like cells were not inherently resistant to specified forms of immune-mediated cell death. These results encourage the continued investigation into immunotherapeutic strategies as a means of controlling breast CSC, particularly through their cell death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cobaleda C, Cruz JJ, Gonzalez-Sarmiento R, Sanchez-Garcia I, Perez-Losada J (2008) The emerging picture of human breast cancer as a stem cell-based disease. Stem Cell Rev 4:67–79. doi:10.1007/s12015-008-9012-6

    Article  PubMed  Google Scholar 

  2. Dontu G, Liu S, Wicha MS (2005) Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev 1:207–213. doi:10.1385/SCR:1:3:207

    Article  PubMed  CAS  Google Scholar 

  3. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nature Rev Cancer 8:545–554. doi:10.1038/nrc2419

    Article  CAS  Google Scholar 

  4. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol Off J Am Soc Clin Oncol 26:2839–2845. doi:10.1200/JCO.2007.15.1829

    Article  CAS  Google Scholar 

  5. Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679. doi:10.1093/jnci/djn123

    Article  PubMed  CAS  Google Scholar 

  6. Woodward WA, Bristow RG (2009) Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology). Semin Radiat Oncol 19:87–95. doi:10.1016/j.semradonc.2008.11.003

    Article  PubMed  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi:10.1073/pnas.0530291100

    Article  PubMed  CAS  Google Scholar 

  8. Oliveira LR, Jeffrey SS, Ribeiro-Silva A (2010) Stem cells in human breast cancer. Histol Histopathol 25:371–385

    PubMed  CAS  Google Scholar 

  9. Schmidt C (2008) Lapatinib study supports cancer stem cell hypothesis, encourages industry research. J Natl Cancer Inst 100:694–695. doi:10.1093/jnci/djn168

    Article  PubMed  Google Scholar 

  10. Shipitsin M, Polyak K (2008) The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 88:459–463. doi:10.1038/labinvest.2008.14

    Article  PubMed  CAS  Google Scholar 

  11. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567. doi:10.1016/j.stem.2007.08.014

    Article  PubMed  CAS  Google Scholar 

  12. Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160. doi:10.1038/nrclinonc.2010.223

    Article  PubMed  CAS  Google Scholar 

  13. Locher C, Conforti R, Aymeric L et al (2010) Desirable cell death during anticancer chemotherapy. Ann N Y Acad Sci 1209:99–108. doi:10.1111/j.1749-6632.2010.05763.x

    Article  PubMed  CAS  Google Scholar 

  14. Stewart TJ, Greeneltch KM, Reid JE, Liewehr DJ, Steinberg SM, Liu K, Abrams SI (2009) Interferon regulatory factor-8 modulates the development of tumour-induced CD11b+Gr-1+ myeloid cells. J Cell Mol Med 13:3939–3950. doi:10.1111/j.1582-4934.2009.00685.x

    Article  PubMed  Google Scholar 

  15. Stewart TJ, Abrams SI (2007) Altered immune function during long-term host-tumor interactions can be modulated to retard autochthonous neoplastic growth. J Immunol 179:2851–2859

    PubMed  CAS  Google Scholar 

  16. Nakayama M, Harada N, Okumura K, Yagita H (2003) Characterization of murine TWEAK and its receptor (Fn14) by monoclonal antibodies. Biochem Biophys Res Commun 306:819–825

    Article  PubMed  CAS  Google Scholar 

  17. Latour S, Fridman WH, Daeron M (1996) Identification, molecular cloning, biologic properties, and tissue distribution of a novel isoform of murine low-affinity IgG receptor homologous to human Fc gamma RIIB1. J Immunol 157:189–197

    PubMed  CAS  Google Scholar 

  18. Stewart TJ, Drane D, Malliaros J, Elmer H, Malcolm KM, Cox JC, Edwards SJ, Frazer IH, Fernando GJ (2004) ISCOMATRIX adjuvant: an adjuvant suitable for use in anticancer vaccines. Vaccine 22:3738–3743. doi:10.1016/j.vaccine.2004.03.026

    Article  PubMed  CAS  Google Scholar 

  19. Chan CJ, Andrews DM, McLaughlin NM, Yagita H, Gilfillan S, Colonna M, Smyth MJ (2010) DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol 184:902–911. doi:10.4049/jimmunol.0903225

    Article  PubMed  CAS  Google Scholar 

  20. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270. doi:10.1101/gad.1061803

    Article  PubMed  CAS  Google Scholar 

  21. Takeda K, Yamaguchi N, Akiba H et al (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199:437–448. doi:10.1084/jem.20031457

    Article  PubMed  CAS  Google Scholar 

  22. Keysar SB, Jimeno A (2010) More than markers: biological significance of cancer stem cell-defining molecules. Mol Cancer Ther 9:2450–2457. doi:10.1158/1535-7163.MCT-10-0530

    Article  PubMed  CAS  Google Scholar 

  23. Sneddon JB, Werb Z (2007) Location, location, location: the cancer stem cell niche. Cell Stem Cell 1:607–611. doi:10.1016/j.stem.2007.11.009

    Article  PubMed  CAS  Google Scholar 

  24. Borovski T, De Sousa EMF, Vermeulen L, Medema JP (2011) Cancer stem cell niche: the place to be. Cancer Res 71:634–639. doi:10.1158/0008-5472.CAN-10-3220

    Article  PubMed  CAS  Google Scholar 

  25. Hurt EM, Farrar WL (2010) Purification and characterization of cancer stem cells. In: Farrar WL (ed) Cancer stem cells, 1st edn. Cambridge University Press, New York, NY, pp 1–14

    Google Scholar 

  26. Nakshatri H, Srour EF, Badve S (2009) Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Ther 4:50–60

    Article  PubMed  CAS  Google Scholar 

  27. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A (2009) TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev 35:280–288. doi:10.1016/j.ctrv.2008.11.006

    Article  PubMed  CAS  Google Scholar 

  28. Ginestier C, Liu S, Diebel ME et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Investig 120:485–497. doi:10.1172/JCI39397

    Article  PubMed  CAS  Google Scholar 

  29. Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809. doi:10.1038/364806a0

    Article  PubMed  CAS  Google Scholar 

  30. Cretney E, Takeda K, Smyth MJ (2007) Cancer: novel therapeutic strategies that exploit the TNF-related apoptosis-inducing ligand (TRAIL)/TRAIL receptor pathway. Int J Biochem Cell Biol 39:280–286. doi:10.1016/j.biocel.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  31. Wu GS (2009) TRAIL as a target in anti-cancer therapy. Cancer Lett 285:1–5. doi:10.1016/j.canlet.2009.02.029

    Article  PubMed  CAS  Google Scholar 

  32. Abdulghani J, El-Deiry WS (2010) TRAIL receptor signaling and therapeutics. Expert Opin Ther Targets 14:1091–1108. doi:10.1517/14728222.2010.519701

    Article  PubMed  CAS  Google Scholar 

  33. Rajeshkumar NV, Rasheed ZA, Garcia-Garcia E, Lopez-Rios F, Fujiwara K, Matsui WH, Hidalgo M (2010) A combination of DR5 agonistic monoclonal antibody with gemcitabine targets pancreatic cancer stem cells and results in long-term disease control in human pancreatic cancer model. Mol Cancer Ther 9:2582–2592. doi:10.1158/1535-7163.MCT-10-0370

    Article  PubMed  CAS  Google Scholar 

  34. Deonarain MP, Kousparou CA, Epenetos AA (2009) Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 1:12–25

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Flow Cytometry core facility for their patience in obtaining the high number of CSC required for these investigations. This work is supported by the National Breast Cancer Foundation (Australia) and the Cancer Council of Victoria.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trina J. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Knight, D.A., Smyth, M.J. et al. Sensitivity of a novel model of mammary cancer stem cell-like cells to TNF-related death pathways. Cancer Immunol Immunother 61, 1255–1268 (2012). https://doi.org/10.1007/s00262-012-1200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1200-1

Keywords

Navigation