Skip to main content

Advertisement

Log in

The Emerging Picture of Human Breast Cancer as a Stem Cell-based Disease

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

There are increasing data supporting the existence of a cell hierarchy within the mammary gland. At the top or this hierarchy a small population of cells with self-renewal properties maintains the tissue architecture and remodeling, and they are known as stem cells. Also, recent evidences indicate that breast cancer is originated and maintained by its own cancer stem cells reminding the normal mammary gland. The existence of this small population of cells with self-renewal capability has important biological and clinical significances. So, the interpretation of tumors as hierarchical cellular structures has changed our vision of the breast cancer scenario. Here, we review the current knowledge about normal and breast cancer stem cells, and their implications in cancer development, together with their consequences in breast cancer susceptibility, dissemination and treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kordon, E. C., & Smith, G. H. (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development, 125, 1921–1930.

    PubMed  CAS  Google Scholar 

  2. Shackleton, M., Vaillant, F., Simpson, K. J., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.

    PubMed  CAS  Google Scholar 

  3. Stingl, J., Eirew, P., Ricketson, I., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993–997.

    PubMed  CAS  Google Scholar 

  4. Lajtha, L. G., & Gilbert, C. W. (1965). Cellular radiation biology pp. 118–154. Baltimore, MD, USA: Williams & Wilkins.

    Google Scholar 

  5. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and CSCs. Nature, 414, 105–111.

    PubMed  CAS  Google Scholar 

  6. Perez-Losada, J., & Balmain, A. (2003). Stem-cell hierarchy in skin cancer. Nature Reviews. Cancer, 3, 434–443.

    PubMed  CAS  Google Scholar 

  7. Lobo, N. A., Shimono, Y., Qian, D., & Clarke, M. F. (2007). The biology of cancer stem cells. Annual Review of Cell and Developmental Biology, 23, 675–699.

    PubMed  CAS  Google Scholar 

  8. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews. Cancer, 3, 895–902.

    PubMed  CAS  Google Scholar 

  9. Hennighause, L., & Robinson, G. W. (2001). Signaling pathways in mammary gland development. Developments in Cell, 1, 467–475.

    Google Scholar 

  10. Sánchez-García, I., Vicente-Dueñas, C., & Cobaleda, C. (2007). The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? BioEssays, 29, 1269–1280.

    PubMed  Google Scholar 

  11. Tokunaga, M., Norman Jr., J. E., Asano, M., et al. (1979). Malignant breast tumors among atomic bomb survivors, Hiroshima and Nagasaki,1950-74. Journal of the National Cancer Institute, 62, 1347–1359.

    PubMed  CAS  Google Scholar 

  12. Aisenberg, A. C., Finkelstein, D. M., Doppke, K. P., Koerner, F. C., Boivin, J. F., & Willett, C. G. (1997). High risk of breast carcinoma after irradiation of young women with Hodgkin’s disease. Cancer, 79, 1203–1210.

    PubMed  CAS  Google Scholar 

  13. Chang, C. C., Su, W., Cruz, A., Saitoh, M., Tai, M. H., & Trosko, J. E. (2001). A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiation Research, 155, 201–207.

    PubMed  CAS  Google Scholar 

  14. Smith, G. H. (2002). Mammary cancer and epithelial stem cells: a problem or a solution? Breast Cancer Research, 4, 47–50.

    PubMed  Google Scholar 

  15. Smalley, M., & Ashworth, A. (2003). Stem cells and breast cancer: a field in transit. Nature Reviews. Cancer, 3, 832–844.

    PubMed  CAS  Google Scholar 

  16. Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36, 59–72.

    PubMed  CAS  Google Scholar 

  17. Waterworth, A. (2004). Introducing the concept of breast cancer stem cells. Breast Cancer Research, 6, 53–54.

    PubMed  CAS  Google Scholar 

  18. Li, Y., & Rosen, J. M. (2005). Stem/progenitor cells in mouse mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 10, 17–24.

    PubMed  Google Scholar 

  19. DeOme, K. B., Fauklin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.

    PubMed  CAS  Google Scholar 

  20. Tsai, Y. C., Lu, Y., Nichols, P. W., Zlotnikov, G., Jones, P. A., & Smith, H. S. (1996). Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Research, 56, 402–404.

    PubMed  CAS  Google Scholar 

  21. Dontu, G., El-Ashry, D., & Wicha, M. S. (2004). Breast cancer, stem/progenitor cells and the estrogen receptor. Trends in Endocrinology and Metabolism, 15, 193–197.

    PubMed  CAS  Google Scholar 

  22. Kouros-Mehr, H., Slorach, E. M., Sternlicht, M. D., & Werb, Z. (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell, 127, 1041–1055.

    PubMed  CAS  Google Scholar 

  23. Asselin-Labat, M. L., Sutherland, K. D., Barker, H., et al. (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biology, 9, 201–209.

    PubMed  CAS  Google Scholar 

  24. Kenney, N. J., Smith, G. H., Lawrence, E., Barrett, J. C., & Salomon, D. S. J. (2001). Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland. Journal of Biomedicine and Biotechnology, 1, 133–143.

    PubMed  CAS  Google Scholar 

  25. Smith, G. H. (2005). Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development, 132, 681–687.

    PubMed  CAS  Google Scholar 

  26. Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Developments in Biologicals, 277, 443–456.

    CAS  Google Scholar 

  27. Pierce, G. B. (1977). Neoplastic stem cells. Advances in Pathobiology, 6, 141–152.

    PubMed  Google Scholar 

  28. Pierce, G. B., Nakane, P. K., Martinez-Hernandez, A., & Ward, J. M. (1977). Ultrastructural comparison of differentiation of stem cells of murine adenocarcinomas of colon and breast with their normal counterparts. Journal of the National Cancer Institute, 58, 1329–1345.

    PubMed  CAS  Google Scholar 

  29. Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., et al. (2004). A distinct side population of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 14228–14233.

    PubMed  CAS  Google Scholar 

  30. Goodell, M. A., McKinney-Freeman, S., & Camargo, F. D. (2005). Isolation and characterization of side population cells. Methods in Molecular Biology, 290, 343–352.

    PubMed  Google Scholar 

  31. Alvi, A. J., Clayton, H., Joshi, C., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 5, R1–R8.

    PubMed  Google Scholar 

  32. Dontu, G., Abdallah, W. M., Foley, J. M., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17, 1253–1270.

    CAS  Google Scholar 

  33. Clarke, R. B., Anderson, E., Howell, A., & Potten, C. S. (2003). Regulation of human breast epithelial stem cells. Cell Proliferation, 36, 45–58.

    PubMed  CAS  Google Scholar 

  34. Clayton, H., Titley, I., & Vivanco, M. (2004). Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Experimental Cell Research, 297, 444–460.

    PubMed  CAS  Google Scholar 

  35. Welm, B., Behbod, F., Goodell, M. A., & Rosen, J. M. (2003). Isolation and characterization of functional mammary gland stem cells. Cell Proliferation, 36, 17–32.

    Google Scholar 

  36. Campos, L. S. (2004). Neurospheres: insights into neural stem cell biology. Journal of Neuroscience Research, 78, 761–769.

    PubMed  CAS  Google Scholar 

  37. Suzuki, H., Taguchi, T., Tanaka, H., et al. (2004). Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochemical and Biophysical Research Communications, 322, 918–922.

    PubMed  CAS  Google Scholar 

  38. Dontu, G., & Wicha, M. S. (2005). Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. Journal of Mammary Gland Biology and Neoplasia, 10, 75–86.

    Google Scholar 

  39. Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6, 605–615.

    Google Scholar 

  40. Stingl, J., Eaves, C. J., Kuusk, U., & Emerman, J. T. (1998). Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation, 63, 201–213.

    PubMed  CAS  Google Scholar 

  41. Stingl, J., Eaves, C. J., Zandieh, I., & Emerman, J. T. (2001). Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Research and Treatment, 67, 93–109.

    PubMed  CAS  Google Scholar 

  42. Gudjonsson, T., Villadsen, R., Nielsen, H. L., Ronnov-Jessen, L., Bissell, M. J., & Petersen, O. W. (2002). Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes & Development, 16, 693–706.

    CAS  Google Scholar 

  43. Bocker, W., Moll, R., Poremba, C., et al. (2002). Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Laboratory Investigation, 82, 737–746.

    PubMed  Google Scholar 

  44. Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245, 42–56.

    Article  CAS  Google Scholar 

  45. Rudland, P. S. (1991). Histochemical organization and cellular composition of ductal buds in developing human breast: evidence of cytochemical intermediates between epithelial and myoepithelial cells. Journal of Histochemistry and Cytochemistry, 39, 1471–1484.

    PubMed  CAS  Google Scholar 

  46. Sapino, A., Macri, L., Gugliotta, P., et al. (1993). Immunophenotypic properties and estrogen dependency of budding cell structures in the developing mouse mammary gland. Differentiation, 55, 13–18.

    PubMed  CAS  Google Scholar 

  47. Li, P., Barraclough, R., Fernig, D. G., Smith, J. A., & Rudland, P. S. (1998). Stem cells in breast epithelia. International Journal of Experimental Pathology, 79, 193–206.

    PubMed  CAS  Google Scholar 

  48. Cardiff, R. D., & Wellings, S. R. (1999). The comparative pathology of human and mouse mammary glands. Journal of Mammary Gland Biology and Neoplasia, 4, 105–122.

    PubMed  CAS  Google Scholar 

  49. Smith, G. H., & Medina, D. (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. Journal of Cell Science, 90, 173–183.

    PubMed  Google Scholar 

  50. Daniel, C. W., Young, L. J., Medina, D., & Deome, K. B. (1971). The influence of mammogenic hormones on serially transplanted mouse mammary gland. Experimental Gerontology, 6, 95–101.

    PubMed  CAS  Google Scholar 

  51. Chepko, G., & Smith, G. H. (1997). Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue Cell, 29, 239–253.

    PubMed  CAS  Google Scholar 

  52. Smith, C. A., Monaghan, P., & Neville, A. M. (1984). Basal clear cells of the normal human breast. Virchows Archiv. A, Pathological Anatomy and Histopathology, 402, 319–329.

    PubMed  CAS  Google Scholar 

  53. Kao, C. Y., Nomata, K., Oakley, C. S., Welsch, C. W., & Chang, C. C. (1995). Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis, 16, 531–538.

    PubMed  CAS  Google Scholar 

  54. Nagle, R. B., Bocker, W., Davis, J. R., et al. (1986). Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. Journal of Histochemistry and Cytochemistry, 34, 869–881.

    PubMed  CAS  Google Scholar 

  55. Villadsen, R., Fridriksdottir, A. J., Ronnov-Jessen, L., et al. (2007). Evidence for a stem cell hierarchy in the adult human breast. Journal of Cellular Biology, 177, 87–101.

    CAS  Google Scholar 

  56. Pierce, G. B. (1974). Neoplasms, differentiation, mutations. American Journal of Pathology, 77, 103–118.

    PubMed  CAS  Google Scholar 

  57. Hamburger, A. W., & Salmon, S. E. (1977). Primary bioassay of human tumor stem cells. Science, 197, 461–463.

    PubMed  CAS  Google Scholar 

  58. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Natural Medicines, 3, 730–737.

    CAS  Google Scholar 

  59. Cobaleda, C., Gutierrez-Cianca, N., Perez-Losada, J., et al. (2000). A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood, 95, 1007–1013.

    PubMed  CAS  Google Scholar 

  60. Perez-Losada, J., Gutierrez-Cianca, N., & Sanchez-Garcia, I. (2001). Philadelphia-positive B-cell acute lymphoblastic leukemia is initiated in an uncommitted progenitor cell. Leukemia & Lymphoma, 42, 569–576.

    CAS  Google Scholar 

  61. Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401.

    PubMed  CAS  Google Scholar 

  62. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    PubMed  CAS  Google Scholar 

  63. Ponti, D., Costa, A., Zaffaroni, N., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65, 5506–5511.

    PubMed  CAS  Google Scholar 

  64. Jamieson, C. H., Ailles, L. E., Dylla, S. J., et al. (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. New England Journal of Medicine, 351, 657–667.

    Google Scholar 

  65. Krivtsov, A. V., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442, 818–822.

    PubMed  CAS  Google Scholar 

  66. Cobaleda, C., Jochum, W., & Busslinger, M. (2007). Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature, 449, 473–477.

    PubMed  CAS  Google Scholar 

  67. Li, Y., Welm, B., Podsypanina, K., et al. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 15853–15858.

    PubMed  CAS  Google Scholar 

  68. Vargo-Gogola, T., & Rosen, J. M. (2007). Modelling breast cancer: one size does not fit all. Nature Reviews. Cancer, 7, 659–672.

    PubMed  CAS  Google Scholar 

  69. Pharoah, P. D., Antoniou, A., Bobrow, M., Zimmern, R. L., Easton, D. F., & Ponder, B. A. (2002). Polygenic susceptibility to breast cancer and implications for prevention. Nature Genetics, 31, 33–36.

    PubMed  CAS  Google Scholar 

  70. Balmain, A., Gray, J., & Ponder, B. (2003). The genetics and genomics of cancer. Nature Genetics, 33, 238–244.

    PubMed  CAS  Google Scholar 

  71. Dux, A., & Muhlbock, O. (1966). Decreased susceptibility to the mammary tumour agent in mice with advancing age. International Journal of Cancer, 1, 409–417.

    CAS  Google Scholar 

  72. Russo, J., Tay, L. K., & Russo, I. H. (1982). Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Research and Treatment, 2, 5–73.

    PubMed  CAS  Google Scholar 

  73. Kolonel, L. N., Altshuler, D., & Henderson, B. E. (2004). The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nature Reviews. Cancer, 4, 519–527.

    PubMed  CAS  Google Scholar 

  74. Kelsey, J. L., Gammon, M. D., & John, E. M. (1993). Reproductive factors and breast cancer. Epidemiologic Reviews, 15, 36–47.

    PubMed  CAS  Google Scholar 

  75. Lambe, M., Hsieh, C. C., Chan, H. W., Ekbom, A., Trichopoulos, D., & Adami, H. O. (1996). Parity, age at first and last birth, and risk of breast cancer: a population-based study in Sweden. Breast Cancer Research and Treatment, 38, 305–311.

    PubMed  CAS  Google Scholar 

  76. Russo, J., & Russo, I. H. (1980). Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Research, 40, 2677–2687.

    PubMed  CAS  Google Scholar 

  77. Moon, R.C., Pike, M.C., Siiteri, P.K. and Welsch, C.W. (1981). Influence of pregnancy and lactation on experimental mammary carcinogenesis. In Hormones and Breast Cancer, ed., in Banbury Report 8, Cold Spring Harbor, NY, Cold Spring Harbor Laboratory, pp. 353–361.

    Google Scholar 

  78. Welsch, C. W. (1985). Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Research, 45, 3415–3443.

    PubMed  CAS  Google Scholar 

  79. Sinha, D. K., Pazik, J. E., & Dao, T. L. (1988). Prevention of mammary carcinogenesis in rats by pregnancy: effect of full-term and interrupted pregnancy. British Journal of Cancer, 57, 390–394.

    PubMed  CAS  Google Scholar 

  80. Russo, I. H., & Russo, J. (1996). Mammary gland neoplasia in long-term rodent studies. Environmental Health Perspectives, 104, 938–967.

    PubMed  CAS  Google Scholar 

  81. Swanson, S. M., Whitaker, L. M., Stockard, C. R., et al. (1997). Hormone levels and mammary epithelial cell proliferation in rats treated with a regimen of estradiol and progesterone that mimics the preventive effect of pregnancy against mammary cancer. Anticancer Research, 17, 4639–4645.

    PubMed  CAS  Google Scholar 

  82. Yang, J., Yoshizawa, K., Nandi, S., & Tsubura, A. (1999). Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. Carcinogenesis, 20, 623–628.

    PubMed  Google Scholar 

  83. Rajkumar, L., Guzman, R. C., Yang, J., Thordarson, G., Talamantes, F., & Nandi, S. (2001). Short-term exposure to pregnancy levels of estrogen prevents mammary carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 11755–11759.

    PubMed  CAS  Google Scholar 

  84. Medina, D. (2004). Breast cancer: the protective effect of pregnancy. Clinical Cancer Research, 10, 380–384.

    Google Scholar 

  85. Blakely, C. M., Stoddard, A. J., Belka, G. K., et al. (2006). Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Research, 66, 6421–6431.

    Google Scholar 

  86. Russo, J., Moral, R., Balogh, G. A., Mailo, D., & Russo, I. H. (2005). The protective role of pregnancy in breast cancer. Breast Cancer Research, 7, 131–142.

    PubMed  Google Scholar 

  87. Russo, J., Balogh, G. A., Heulings, R., et al. (2006). Molecular basis of pregnancy-induced breast cancer protection. European Journal of Cancer Prevention, 15, 306–342.

    Google Scholar 

  88. Russo, J., Balogh, G. A., Chen, J., et al. (2006). The concept of stem cell in the mammary gland and its implication in morphogenesis, cancer and prevention. Frontiers in Bioscience, 11, 151–172.

    PubMed  CAS  Google Scholar 

  89. D’Cruz, C. M., Moody, S. E., Master, S. R., et al. (2002). Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Molecular Endocrinology, 16, 2034–2051.

    PubMed  CAS  Google Scholar 

  90. Balogh, G. A., Heulings, R., Mailo, D. A., et al. (2006). Genomic signature induced by pregnancy in the human breast. International Journal of Oncology, 28, 399–410.

    PubMed  CAS  Google Scholar 

  91. Lowenberg, B., & Sonneveld, P. (1998). Resistance to chemotherapy in acute leukemia. Current Opinion in Oncology, 10, 31–35.

    PubMed  CAS  Google Scholar 

  92. Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Reviews. Cancer, 2, 48–58.

    PubMed  CAS  Google Scholar 

  93. Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews. Cancer, 5, 275–284.

    PubMed  CAS  Google Scholar 

  94. Donnenberg, V. S., & Donnenberg, A. D. (2005). Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. Journal of Clinical Pharmacology, 45, 872–877.

    Google Scholar 

  95. Bruserud, O., & Gjertsen, B. T. (2000). New strategies for the treatment of acute myelogenous leukemia: differentiation induction--present use and future possibilities. Stem Cells, 18, 157–165.

    PubMed  CAS  Google Scholar 

  96. Demetri, G. D., Fletcher, C. D., Mueller, E., et al. (1999). Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proceedings of the National Academy of Sciences of the United States of America, 96, 3951–3956.

    PubMed  CAS  Google Scholar 

  97. Woodruff, M. (1982). Interaction of cancer and host. British Journal of Cancer, 46, 313–322.

    PubMed  CAS  Google Scholar 

  98. Callaway, M. P., & Briggs, J. C. (1989). The incidence of late recurrence [greater than 10 years]; an analysis of 536 consecutive cases of cutaneous melanoma. British Journal of Plastic Surgery, 42, 46–49.

    PubMed  CAS  Google Scholar 

  99. van Rhee, F., Lin, F., Cross, N. C., et al. (1994). Detection of residual leukaemia more than 10 years after allogeneic bone marrow transplantation for chronic myelogenous leukaemia. Bone Marrow Transplant, 14, 609–612.

    PubMed  Google Scholar 

  100. Yong, A. S., & Goldman, J. M. (1999). Relapse of chronic myeloid leukaemia 14 years after allogeneic bone marrow transplantation. Bone Marrow Transplant, 23, 827–828.

    PubMed  CAS  Google Scholar 

  101. Holyoake, T. L., Jiang, X., Jorgensen, H. G., et al. (2001). Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood, 97, 720–708.

    PubMed  CAS  Google Scholar 

  102. Naumov, G. N., MacDonald, I. C., Chambers, A. F., & Groom, A. C. (2001). Solitary cancer cells as a possible source of tumour dormancy? Seminars in Cancer Biology, 11, 271–276.

    PubMed  CAS  Google Scholar 

  103. Naumov, G. N., Akslen, L. A., & Folkman, J. (2006). Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle, 5, 1779–1787.

    PubMed  CAS  Google Scholar 

  104. Van Duuren, B. L., Sivak, A., Katz, C., Seidman, I., & Melchionne, S. (1975). The effect of aging and interval between primary and secondary treatment in two-stage carcinogenesis on mouse skin. Cancer Research, 35, 502–505.

    PubMed  Google Scholar 

  105. Fidler, I. J. (1991). The biology of cancer metastasis or, ‘you cannot fix it if you do not know how it works’. BioEssays, 13, 551–554.

    PubMed  CAS  Google Scholar 

  106. Blau, H. M., Brazelton, T. R., & Weimann, J. M. (2001). The evolving concept of a stem cell: entity or function? Cell, 105, 829–841.

    PubMed  CAS  Google Scholar 

  107. Gonzalez-Sarmiento, R. & Perez-Losada, J. (2008) Breast Cancer as a Stem Cell Disease. Current Stem Cell Research & Therapy. 3, 55–65.

    CAS  Google Scholar 

  108. Brennan, K. R., & Brown, A. M. (2004). Wnt proteins in mammary development and cancer. Journal of Mammary Gland Biology and Neoplasia, 9, 119–131.

    PubMed  Google Scholar 

  109. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.

    PubMed  CAS  Google Scholar 

  110. Brisken, C., Heineman, A., Chavarria, T., et al. (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes & Development, 14, 650–654.

    Google Scholar 

  111. Lin, S. Y., Xia, W., Wang, J. C., et al. (2000). Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 97, 4262–4266.

    PubMed  CAS  Google Scholar 

  112. Milovanovic, T., Planutis, K., Nguyen, A., et al. (2004). Expression of Wnt genes and frizzled 1 and 2 receptors in normal breast epithelium and infiltrating breast carcinoma. International Journal of Oncology, 25, 1337–1342.

    Google Scholar 

  113. Watanabe, O., Imamura, H., Shimizu, T., et al. (2004). Expression of twist and wnt in human breast cancer. Anticancer Research, 24, 3851–3856.

    PubMed  CAS  Google Scholar 

  114. Jonsson, M., Dejmek, J., Bendahl, P. O., & Andersson, T. (2002). Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Research, 62, 409–416.

    PubMed  CAS  Google Scholar 

  115. Liu, B. Y., McDermott, S. P., Khwaja, S. S., & Alexander, C. M. (2004). The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 4158–4163.

    PubMed  CAS  Google Scholar 

  116. Uyttendaele, H., Soriano, J. V., Montesano, R., & Kitajewski, J. (1998). Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Developments in Biologicals, 196, 204–217.

    CAS  Google Scholar 

  117. Gallahan, D., Jhappan, C., Robinson, G., et al. (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Research, 56, 1775–1785.

    Google Scholar 

  118. Jhappan, C., Gallahan, D., Stahle, C., et al. (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes & Development, 6, 345–355.

    CAS  Google Scholar 

  119. Smith, G. H., Gallahan, D., Diella, F., Jhappan, C., Merlino, G., & Callahan, R. (1995). Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth & Differentiation, 6, 563–577.

    CAS  Google Scholar 

  120. Imatani, A., & Callahan, R. (2000). Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene, 19, 223–231.

    PubMed  CAS  Google Scholar 

  121. Dievart, A., Beaulieu, N., & Jolicoeur, P. (1999). Involvement of Notch1 in the development of mouse mammary tumors. Oncogene, 18, 5973–5981.

    PubMed  CAS  Google Scholar 

  122. Lewis, M. T., Ross, S., Strickland, P. A., et al. (1999). Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development, 126, 5181–5193.

    Google Scholar 

  123. Lewis, M. T., Ross, S., Strickland, P. A., et al. (2001). The Gli2 transcription factor is required for normal mouse mammary gland development. Developments in Biologicals, 238, 133–144.

    CAS  Google Scholar 

  124. Chang-Claude, J., Dunning, A., Schnitzbauer, U., et al. (2003). The patched polymorphism Pro1315Leu [C3944T] may modulate the association between use of oral contraceptives and breast cancer risk. International Journal of Cancer, 103, 779–783.

    CAS  Google Scholar 

  125. Xie, J., Johnson, R. L., Zhang, X., et al. (1997). Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Research, 57, 2369–2372.

    PubMed  CAS  Google Scholar 

  126. Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. American Journal of Pathology, 167, 409–417.

    PubMed  CAS  Google Scholar 

  127. Boulanger, C. A., Wagner, K. U., & Smith, G. H. (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene, 24, 552–560.

    Google Scholar 

  128. Kritikou, E. A., Sharkey, A., Abell, K., et al. (2003). A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development, 130, 3459–3468.

    Google Scholar 

Download references

Acknowledgements

We apologize to many of our colleagues whose original work could not be cited due to space constrains.

J.P.L. is an investigator of the “Programa Ramón y Cajal” from the Spanish “Ministerio de Educación y Ciencia”; his work is partially supported by the “Fundación Samuel Solorzano”, “Fondo de Investigaciones Sanitarias” (PI070057), and “MEC Consolider-Ingenio 2010” (Ref. CSD2007-0017).

C.C. is a Spanish “Ramón y Cajal” investigator from the Spanish “Ministerio de Educación y Ciencia”. Research at C.C.’s lab is partially supported by Fondo de Investigaciones Sanitarias (PI04/0261), Junta de Castilla y León (SA087A06), Fundación de Investigación MMA, and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017) projects.

R.G.S. work is partially supported by a grant from the “Fundación de Investigación Médica Mutua Madrileña Automovilista (MMA)”, SAF2007-66394 and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017).

I.S.G.’s research is supported partially by FEDER and by MEC (SAF2006-03726 and PETRI No. 95-0913.OP), Junta de Castilla y León (CSI03A05), FIS (PI050087, PI050116), Fundación de Investigación MMA, Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación Biosanitaria con Células Madre), CDTEAM project (CENIT-Ingenio 2010) and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017). J.J.C., R.G.S. and I.S.G. belong to the GR15 group sponsored by JCyL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Pérez-Losada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobaleda, C., Cruz, J.J., González-Sarmiento, R. et al. The Emerging Picture of Human Breast Cancer as a Stem Cell-based Disease. Stem Cell Rev 4, 67–79 (2008). https://doi.org/10.1007/s12015-008-9012-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9012-6

Keywords

Navigation