Skip to main content

Advertisement

Log in

Rituximab-induced direct inhibition of T-cell activation

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Rituximab, an anti-CD20 monoclonal antibody, is reported to increase the T-cell-dependent infection risk. The current study was designed to investigate whether rituximab interferes with T-cell activation.

Patients and methods

Patients with non-Hodgkin lymphoma receiving 4–6 courses of 375 mg/m2 rituximab underwent detailed assessment of T-cell activation pre- and post-rituximab. A similar analysis assessed the in vitro effect of rituximab on T-cell activation in response to allogeneic dendritic cells (allo-DCs) and other stimuli.

Results

Patients receiving rituximab exhibited a significant decline in IL-2 and IFN-γ levels in peripheral blood, most prominent after repeated rituximab courses. Evaluation at 3 months after rituximab therapy showed restoration of inflammatory cytokine production. Similarly, in vitro stimulation of peripheral blood mononuclear cells in the presence of rituximab resulted in a significant decrease in T-cell activation markers, inflammatory cytokine production and proliferative capacity. These effects were also observed using B-cell-depleted T cells (CD3+CD25CD19) and were accompanied with disappearance of CD3+CD20dim T-cell population.

Conclusion

Rituximab administration results in transient, dose-dependent T-cell inactivation. This effect is obtained even in B-cell absence and may increase the infection risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833

    PubMed  CAS  Google Scholar 

  2. Edwards JC, Cambridge G (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6:394–403

    Article  PubMed  CAS  Google Scholar 

  3. Keating GM (2010) Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs 70:1445–1476

    Article  PubMed  CAS  Google Scholar 

  4. van Oers MH, Van Glabbeke M, Giurgea L, Klasa R, Marcus RE, Wolf M, Kimby E, van t Veer M, Vranovsky A, Holte H, Hagenbeek A (2010) Rituximab maintenance treatment of relapsed/resistant follicular non-Hodgkin’s lymphoma: long-term outcome of the EORTC 20981 phase III randomized intergroup study. J Clin Oncol 28:2853–2858

    Article  PubMed  Google Scholar 

  5. Gisselbrecht C, Glass B, Mounier N, Singh Gill D, Linch DC, Trneny M, Bosly A, Ketterer N, Shpilberg O, Hagberg H, Ma D, Briere J, Moskowitz CH, Schmitz N (2010) Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol 28:4184–4190

    Article  PubMed  Google Scholar 

  6. Martinelli G, Schmitz SF, Utiger U, Cerny T, Hess U, Bassi S, Okkinga E, Stupp R, Stahel R, Heizmann M, Vorobiof D, Lohri A, Dietrich PY, Zucca E, Ghielmini M (2010) Long-term follow-up of patients with follicular lymphoma receiving single-agent rituximab at two different schedules in trial SAKK 35/98. J Clin Oncol 28:4480–4484

    Article  PubMed  CAS  Google Scholar 

  7. Kelesidis T, Daikos G, Boumpas D, Tsiodras S (2011) Does rituximab increase the incidence of infectious complications? A narrative review. Int J Infect Dis 15:e2–e16

    Article  PubMed  CAS  Google Scholar 

  8. Kurokawa T, Hase M, Tokuman N, Yoshida T (2011) Immune reconstitution of B-cell lymphoma patients receiving CHOP-based chemotherapy containing rituximab. Hematol Oncol 29:5–9

    Article  PubMed  CAS  Google Scholar 

  9. Stroopinsky D, Avivi I, Rowe JM, Avigan D, Katz T (2009) Allogeneic induced human FOXP3(+)IFN-gamma(+) T cells exhibit selective suppressive capacity. Eur J Immunol 39:2703–2715

    Article  PubMed  CAS  Google Scholar 

  10. Reiser M, Wenger M, Nickenig C, Peter N, Metzner B, Pfreundschuh M (2006) Serum levels and pharmacokinetic of rituximab in Bi-weekly R-CHOP in elderly patients with DLBCL treated in the RICOVER-60 trial. J Clin Oncol 24:7537a

    Google Scholar 

  11. Pfreundschuh M, Zeynalova S, Poeschel V, Haenel M, Schmitz N, Hensel M, Reiser M, Loeffler M, Schubert J (2007) Dose-dense rituximab improves outcome of elderly patients with poor-prognosis diffuse large B-cell lymphoma (DLBCL): results of the DENSE-R-CHOP-14 trial of the German high-grade non-hodgkin lymphoma study group (DSHNHL). Blood 110:789a

    Article  Google Scholar 

  12. Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D, Seymour JF, Laubach J, Bawn SD, Gordon LI, Winter JN, Furman RR, Vose JM, Zelenetz AD, Mamtani R, Raisch DW, Dorshimer GW, Rosen ST, Muro K, Gottardi-Littell NR, Talley RL, Sartor O, Green D, Major EO, Bennett CL (2009) Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113:4834–4840

    Article  PubMed  CAS  Google Scholar 

  13. Koo YX, Tan DS, Tan IB, Tao M, Lim ST (2009) Hepatitis B virus reactivation in a patient with resolved hepatitis B virus infection receiving maintenance rituximab for malignant B-cell lymphoma. Ann Intern Med 150:655–656

    PubMed  Google Scholar 

  14. Tsutsumi Y, Kanamori H, Mori A, Tanaka J, Asaka M, Imamura M, Masauzi N (2005) Reactivation of hepatitis B virus with rituximab. Expert Opin Drug Saf 4:599–608

    Article  PubMed  CAS  Google Scholar 

  15. Chang H, Yeh HC, Su YC, Lee MH (2008) Pneumocystis jiroveci pneumonia in patients with non-Hodgkin’s lymphoma receiving chemotherapy containing rituximab. J Chin Med Assoc 71:579–582

    Article  PubMed  Google Scholar 

  16. Pfreundschuh M, Poeschel V, Haenel M, Schmitz N, Ho AD, Reiser M, Loeffler M, Schubert J (2008) Improved outcome of elderly patients with poor-prognosis diffuse large B-cell lymphoma (DLBCL) after dose-dense rituximab: results of the DENSE-R-CHOP-14 trial of the German high-grade non-hodgkin lymphoma study group (DSHNHL). J Clin Oncol 26:8508a

    Google Scholar 

  17. Kamel S, O’Connor S, Lee N, Filshie R, Nandurkar H, Tam CS (2010) High incidence of Pneumocystis jirovecii pneumonia in patients receiving biweekly rituximab and cyclophosphamide, Adriamycin, vincristine, and prednisone. Leuk Lymphoma 51:797–801

    Article  PubMed  CAS  Google Scholar 

  18. Kolstad A, Holte H, Fossa A, Lauritzsen GF, Gaustad P, Torfoss D (2007) Pneumocystis jirovecii pneumonia in B-cell lymphoma patients treated with the rituximab-CHOEP-14 regimen. Haematologica 92:139–140

    Article  PubMed  CAS  Google Scholar 

  19. Venhuizen AC, Hustinx WN, van Houte AJ, Veth G, van der Griend R (2008) Three cases of Pneumocystis jirovecii pneumonia (PCP) during first-line treatment with rituximab in combination with CHOP-14 for aggressive B-cell non-Hodgkin’s lymphoma. Eur J Haematol 80:275–276

    Article  PubMed  Google Scholar 

  20. Tuccori M, Focosi D, Blandizzi C, Pelosini M, Montagnani S, Maggi F, Pistello M, Antonioli L, Fornai M, Pepe P, Rossi G, Petrini M (2010) Inclusion of rituximab in treatment protocols for non-Hodgkin’s lymphomas and risk for progressive multifocal leukoencephalopathy. Oncologist 15:1214–1219

    Article  PubMed  Google Scholar 

  21. Evens AM, Jovanovic BD, Su YC, Raisch DW, Ganger D, Belknap SM, Dai MS, Chiu BC, Fintel B, Cheng Y, Chuang SS, Lee MY, Chen TY, Lin SF, Kuo CY (2011) Rituximab-associated hepatitis B virus (HBV) reactivation in lymphoproliferative diseases: meta-analysis and examination of FDA safety reports. Ann Oncol 22:1170–1180

    Article  PubMed  CAS  Google Scholar 

  22. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581

    Article  PubMed  CAS  Google Scholar 

  23. Liossis SN, Sfikakis PP (2008) Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin Immunol 127:280–285

    Article  PubMed  CAS  Google Scholar 

  24. Bouaziz JD, Yanaba K, Venturi GM, Wang Y, Tisch RM, Poe JC, Tedder TF (2007) Therapeutic B cell depletion impairs adaptive and autoreactive CD4+ T cell activation in mice. Proc Natl Acad Sci USA 104:20878–20883

    Article  PubMed  CAS  Google Scholar 

  25. Eming R, Nagel A, Wolff-Franke S, Podstawa E, Debus D, Hertl M (2008) Rituximab exerts a dual effect in pemphigus vulgaris. J Invest Dermatol 128:2850–2858

    Article  PubMed  CAS  Google Scholar 

  26. Monson NL, Cravens P, Hussain R, Harp CT, Cummings M, de Pilar Martin M, Ben LH, Do J, Lyons JA, Lovette-Racke A, Cross AH, Racke MK, Stuve O, Shlomchik M, Eagar TN (2011) Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis. PLoS One 6:e17103

    Article  PubMed  CAS  Google Scholar 

  27. Wilk E, Witte T, Marquardt N, Horvath T, Kalippke K, Scholz K, Wilke N, Schmidt RE, Jacobs R (2009) Depletion of functionally active CD20+ T cells by rituximab treatment. Arthritis Rheum 60:3563–3571

    Article  PubMed  CAS  Google Scholar 

  28. Hultin LE, Hausner MA, Hultin PM, Giorgi JV (1993) CD20 (pan-B cell) antigen is expressed at a low level on a subpopulation of human T lymphocytes. Cytometry 14:196–204

    Article  PubMed  CAS  Google Scholar 

  29. Tsokos GC (2004) B cells, be gone–B-cell depletion in the treatment of rheumatoid arthritis. N Engl J Med 350:2546–2548

    Article  PubMed  CAS  Google Scholar 

  30. Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF (1993) Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol 121:1121–1132

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Ayer LM, Lytton J, Deans JP (2003) Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 278:42427–42434

    Article  PubMed  CAS  Google Scholar 

  32. Rodriguez J, Gutierrez A (2008) Pharmacokinetic properties of rituximab. Rev Recent Clin Trials 3:22–30

    Article  PubMed  CAS  Google Scholar 

  33. Unruh TL, Zuccolo J, Beers SA, Kanevets U, Shi Y, Deans JP (2010) Therapeutic (high) doses of rituximab activate calcium mobilization and inhibit B-cell growth via an unusual mechanism triggered independently of both CD20 and Fcgamma receptors. J Immunother 33:30–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported in part by Roche Pharmaceuticals.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irit Avivi.

Additional information

Dina Stroopinsky and Tamar Katz contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroopinsky, D., Katz, T., Rowe, J.M. et al. Rituximab-induced direct inhibition of T-cell activation. Cancer Immunol Immunother 61, 1233–1241 (2012). https://doi.org/10.1007/s00262-011-1168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1168-2

Keywords

Navigation