Skip to main content
Log in

Regulatory T-cell depletion synergizes with gp96-mediated cellular responses and antitumor activity

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Despite its potent immunostimulatory properties, vaccination with autologous tumor-derived gp96 has relatively modest antitumor effect in a range of clinical trials. Based on our previous study showing a gp96-mediated immune balance between CTL and Tregs, here we investigated possible synergy between gp96 vaccine and systemic Treg depletion on induction of antitumor T-cell immunity and the mechanisms accounting for synergistic efficacy. In gp96–peptide complex immunized BALB/c mice, anti-CD25 mAb treatment significantly increased IFN-γ-producing CD8+ and CD4+ T cells by about 1–2-fold in spleen and 40–50% in lymph node. A significantly higher number of peptide-specific CTL were observed under anti-CD25 mAb treatment compared with no treatment. Moreover, Treg depletion synergistically improved the anticancer activity of tumor-derived gp96 vaccine in the poorly immunogenic and highly tumorigenic B16 melanoma model in C57BL/6 J mice. While gp96 immunization alone led to the modest enhancement of CTL activities in spleen, the combination with Treg depletion dramatically increased tumor-specific CTL responses. In addition, the combination resulted in a significant increase of CD8+ T-cell infiltration in tumor, which correlated with an enhanced inhibition of tumor growth. Our results provide evidence that targeting Tregs may provide a more efficient strategy to potentiate gp96-mediated T-cell responses and enhance the antitumor efficiency of gp96-based therapeutic vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Srivastava PK, Udono H, Blachere NE et al (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93–98

    Article  PubMed  CAS  Google Scholar 

  2. Ishii T, Udono H, Yamano T et al (1999) Isolation of MHC class I-restricted tumor antigen peptide and its precursors associated with heat shock proteins hsp70, hsp90, and gp96. J Immunol 162:1303–1309

    PubMed  CAS  Google Scholar 

  3. Kropp LE, Garg M, Binder RJ (2010) Ovalbumin-derived precursor peptides are transferred sequentially from gp96 and calreticulin to MHC class I in the endoplasmic reticulum. J Immunol 184:5619–5627

    Article  PubMed  CAS  Google Scholar 

  4. Srivastava PK, DeLeo AB, Old LJ (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83:3407–3411

    Article  PubMed  CAS  Google Scholar 

  5. Tamura Y, Peng P, Liu K et al (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120

    Article  PubMed  CAS  Google Scholar 

  6. Blachere NE, Li Z, Chandawarkar RY et al (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322

    Article  PubMed  CAS  Google Scholar 

  7. Doody AD, Kovalchin JT, Mihalyo MA et al (2004) Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol 172:6087–6092

    PubMed  CAS  Google Scholar 

  8. Binder RJ, Srivastava PK (2004) Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci USA 101:6128–6133

    Article  PubMed  CAS  Google Scholar 

  9. Matsutake T, Sawamura T, Srivastava PK (2010) High efficiency CD91- and LOX-1-mediated re-presentation of gp96-chaperoned peptides by MHC II molecules. Cancer Immun 10:7–14

    PubMed  Google Scholar 

  10. Akutsu Y, Matsubara H, Urashima T et al (2007) Combination of direct intratumoral administration of dendritic cells and irradiation induces strong systemic antitumor effect mediated by GRP94/gp96 against squamous cell carcinoma in mice. Int J Oncol 31:509–515

    PubMed  CAS  Google Scholar 

  11. Warger T, Hilf N, Rechtsteiner G et al (2006) Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 281:22545–22553

    Article  PubMed  CAS  Google Scholar 

  12. Yang Y, Liu B, Dai J et al (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226

    Article  PubMed  Google Scholar 

  13. McGettrick AF, O’Neill LA (2010) Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol 22:20–27

    Article  PubMed  CAS  Google Scholar 

  14. Jockheck-Clark AR, Bowers EV, Totonchy MB et al (2010) Re-examination of CD91 function in GRP94 (glycoprotein 96) surface binding, uptake, and peptide cross-presentation. J Immunol 185:6819–6830

    Article  PubMed  CAS  Google Scholar 

  15. Lev A, Dimberu P, Das SR et al (2009) Efficient cross-priming of antiviral CD8+ T cells by antigen donor cells is GRP94 independent. J Immunol 183:4205–4210

    Article  PubMed  CAS  Google Scholar 

  16. Pilla L, Patuzzo R, Rivoltini L et al (2006) A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother 55:958–968

    Article  PubMed  CAS  Google Scholar 

  17. Testori A, Richards J, Whitman E et al (2008) Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100–21 Study Group. J Clin Oncol 26:955–962

    Article  PubMed  CAS  Google Scholar 

  18. Belli F, Testori A, Rivoltini L et al (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180

    Article  PubMed  CAS  Google Scholar 

  19. Wood CG, Srivastava P, Lacombe L et al (2009) Survival update from a multicenter, randomized, phase III trial of vitespen versus observation as adjuvant therapy for renal cell carcinoma in patients at high risk of recurrence. J Clin Oncol 27:15s-abstr 3009

    Google Scholar 

  20. Parsa A, Crane C, Han S et al (2011) Autologous heat shock protein vaccine (HSPPC-96) for patients with recurrent glioblastoma (GBM): results of a phase II multicenter clinical trial with immunological assessments. J Clin Oncol 29:abstr 2565

    Google Scholar 

  21. Wood CG, Mulders P (2009) Vitespen: a preclinical and clinical review. Future Oncol 5:763–774

    Article  PubMed  CAS  Google Scholar 

  22. Aalamian M, Fuchs E, Gupta R et al (2006) Autologous renal cell cancer vaccines using heat shock protein-peptide complexes. Urol Oncol 24:425–433

    Article  PubMed  CAS  Google Scholar 

  23. Buckwalter MR, Srivastava PK (2008) “It is the antigen(s), stupid” and other lessons from over a decade of vaccitherapy of human cancer. Semin Immunol 20:296–300

    Article  PubMed  CAS  Google Scholar 

  24. Maki RG, Livingston PO, Lewis JJ et al (2007) A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 52:1964–1972

    Article  PubMed  CAS  Google Scholar 

  25. Alatrakchi N, Koziel M (2009) Regulatory T cells and viral liver disease. J Viral Hepat 16:223–229

    Article  PubMed  Google Scholar 

  26. Elkord E, Alcantar-Orozco EM, Dovedi SJ et al (2010) T regulatory cells in cancer: recent advances and therapeutic potential. Expert Opin Biol Ther 10:1573–1586

    Article  PubMed  CAS  Google Scholar 

  27. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  28. Kimpfler S, Sevko A, Ring S et al (2009) Skin melanoma development in ret transgenic mice despite the depletion of CD25+Foxp3+ regulatory T cells in lymphoid organs. J Immunol 183:6330–6337

    Article  PubMed  CAS  Google Scholar 

  29. Chandawarkar RY, Wagh MS, Srivastava PK (1999) The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 189:1437–1442

    Article  PubMed  CAS  Google Scholar 

  30. Chandawarkar RY, Wagh MS, Kovalchin JT et al (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Zhou M, Han J et al (2005) Generation of murine CTL by a hepatitis B virus-specific peptide and evaluation of the adjuvant effect of heat shock protein glycoprotein 96 and its terminal fragments. J Immunol 174:195–204

    PubMed  CAS  Google Scholar 

  32. Dai J, Liu B, Ngoi SM et al (2007) TLR4 hyperresponsiveness via cell surface expression of heat shock protein gp96 potentiates suppressive function of regulatory T cells. J Immunol 178:3219–3225

    PubMed  CAS  Google Scholar 

  33. Liu Z, Li X, Qiu L et al (2009) Treg suppress CTL responses upon immunization with HSP gp96. Eur J Immunol 39:3110–3120

    Article  PubMed  CAS  Google Scholar 

  34. Meng SD, Gao T, Gao GF et al (2001) HBV-specific peptide associated with heat-shock protein gp96. Lancet 357:528–529

    Article  PubMed  CAS  Google Scholar 

  35. Meng SD, Song J, Rao Z et al (2002) Three-step purification of gp96 from human liver tumor tissues suitable for isolation of gp96-bound peptides. J Immunol Methods 264:29–35

    Article  PubMed  CAS  Google Scholar 

  36. Cohen AD, Schaer DA, Liu C et al (2010) Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 5:e10436–e10447

    Article  PubMed  Google Scholar 

  37. Jedema I, van der Werff NM, Barge RM et al (2004) New CFSE-based assay to determine susceptibility to lysis by cytotoxic T cells of leukemic precursor cells within a heterogeneous target cell population. Blood 103:2677–2682

    Article  PubMed  CAS  Google Scholar 

  38. Chou TC, Talalay P (1983) Analysis of combined drug effects—a new look at a very old problem. Trends Pharmacol Sci 4:450–454

    Article  CAS  Google Scholar 

  39. Lee CH, Chiang YH, Chang SE et al (2009) Tumor-localized ligation of CD3 and CD28 with systemic regulatory T-cell depletion induces potent innate and adaptive antitumor responses. Clin Cancer Res 15:2756–2766

    Article  PubMed  CAS  Google Scholar 

  40. Wang XY, Arnouk H, Chen X et al (2006) Extracellular targeting of endoplasmic reticulum chaperone glucose-regulated protein 170 enhances tumor immunity to a poorly immunogenic melanoma. J Immunol 177:1543–1551

    PubMed  CAS  Google Scholar 

  41. Srivastava PK, Das MR (1984) The serologically unique cell surface antigen of Zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. Int J Cancer 33:417–422

    Article  PubMed  CAS  Google Scholar 

  42. Manigold T, Racanelli V (2007) T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: facts and controversies. Lancet Infect Dis 7:804–813

    Article  PubMed  CAS  Google Scholar 

  43. Setiady YY, Coccia JA, Park PU (2010) In vivo depletion of CD4+FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by FcgammaRIII+ phagocytes. Eur J Immunol 40:780–786

    Article  PubMed  CAS  Google Scholar 

  44. Jacobs C, Duewell P, Heckelsmiller K et al (2011) An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. Int J Cancer 128:897–907

    Article  PubMed  CAS  Google Scholar 

  45. Whelan MC, Casey G, MacConmara M et al (2010) Effective immunotherapy of weakly immunogenic solid tumours using a combined immunogene therapy and regulatory T-cell inactivation. Cancer Gene Ther 17:501–511

    Article  PubMed  CAS  Google Scholar 

  46. Medina-Echeverz J, Fioravanti J, Zabala M et al (2011) Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J Immunol 186:807–815

    Article  PubMed  CAS  Google Scholar 

  47. Mitsui J, Nishikawa H, Muraoka D et al (2010) Two distinct mechanisms of augmented antitumor activity by modulation of immunostimulatory/inhibitory signals. Clin Cancer Res 16:2781–2791

    Article  PubMed  CAS  Google Scholar 

  48. Akins EJ, Moore ML, Tang S et al (2010) In situ vaccination combined with androgen ablation and regulatory T-cell depletion reduces castration-resistant tumor burden in prostate-specific pten knockout mice. Cancer Res 70:3473–3482

    Article  PubMed  CAS  Google Scholar 

  49. Terabe M, Ambrosino E, Takaku S et al (2009) Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clin Cancer Res 15:6560–6569

    Article  PubMed  CAS  Google Scholar 

  50. Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 1174:99–106

    Article  PubMed  CAS  Google Scholar 

  51. Jacobs JF, Punt CJ, Lesterhuis WJ et al (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16:5067–5078

    Article  PubMed  CAS  Google Scholar 

  52. Li X, Kostareli E, Suffner J et al (2010) Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur J Immunol 40:3325–3335

    Article  PubMed  CAS  Google Scholar 

  53. Vendetti S, Davidson TS, Veglia F et al (2010) Polyclonal Treg cells enhance the activity of a mucosal adjuvant. Immunol Cell Biol 88:698–706

    Article  PubMed  CAS  Google Scholar 

  54. B Van’t Land, Schijf M, van Esch BC et al (2010) Regulatory T-cells have a prominent role in the immune modulated vaccine response by specific oligosaccharides. Vaccine 28:5711–5717

    Article  Google Scholar 

  55. Di Paolo NC, Tuve S, Ni S et al (2006) Effect of adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses. Cancer Res 66:960–969

    Article  PubMed  CAS  Google Scholar 

  56. Schreiber TH, Deyev VV, Rosenblatt JD et al (2009) Tumor-induced suppression of CTL expansion and subjugation by gp96-Ig vaccination. Cancer Res 69:2026–2033

    Article  PubMed  CAS  Google Scholar 

  57. Wang S, Qiu L, Liu G et al (2011) Heat shock protein gp96 enhances humoral and T cell responses, decreases Treg frequency and potentiates the anti-HBV activity in BALB/c and transgenic mice. Vaccine. doi:10.1016/j.vaccine.2011.1005.1008

Download references

Acknowledgments

The authors thank Fulian Liao for her technical help and advices in cell culture, Chunbao Zhou and Jinhong Yuan for their skillful technical assistance in flow cytometric analysis. This work was supported by a grant from Major State Basic Research Development Program of China (No.2007CB512802), grants from the National Natural Science Foundation of China (NSFC, 30970146, 91029724, 81021003) and the CAS projects (KSCX2-YW-R-1, KSCX2-YW-R-183) and supported by Beijing Natural Science Foundation (Role of heat-shock protein gp96 in antigen presentation and development of new gp96-based vaccines).

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songdong Meng.

Additional information

Xiaoli Yan and Xiaojun Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Zhang, X., Wang, Y. et al. Regulatory T-cell depletion synergizes with gp96-mediated cellular responses and antitumor activity. Cancer Immunol Immunother 60, 1763–1774 (2011). https://doi.org/10.1007/s00262-011-1076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1076-5

Keywords

Navigation