Skip to main content

Advertisement

Log in

In vitro synthesis of primary specific anti-breast cancer antibodies by normal human peripheral blood mononuclear cells

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In this study, we developed a unique in vitro model to mimic the endogenous tumor microenvironment to understand the effect of immunotherapy with activated T-cells (ATC) armed with anti-CD3 × anti-Her2 bispecific antibody (aATC) on antibody response by naive immune cells. This model contained a co-culture of naïve peripheral blood mononuclear cells (PBMC), breast cancer cells (SK-BR-3), ATC or aATC and CpG ODNs. Culture supernatants were tested at various time points for anti-SK-BR-3 antibodies by ELISA, Western blot and flow cytometry. PBMC cocultured with non-irradiated aATC or irradiated (*) aATC showed significant increases in anti-tumor antibody production at day 14 (P < 0.0001) in the presence of CpG-ODN compared to unstimulated PBMC cultures (n = 9). Antibody specificity was confirmed by ELISA, Western blot and flow cytometry. Co-cultures containing *aATC and CpG showed significantly enhanced levels of IgG2 (P < 0.001) and cytokines that promote IgG2 synthesis including IL-13 (P < 0.02), IFNγ (P < 0.01) and GM-CSF (P < 0.05) compared to unstimulated PBMC control (n = 3). We show that aATC targeting and lysis of tumor cells induces an anti-tumor antibody response in our in vitro model. This model provides a unique opportunity to evaluate the interactions of T-cells, B-cells, and antigen-presenting cells leading to specific anti-tumor antibody responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jinushi M, Hodi FS, Dranoff G (2006) Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc Natl Acad Sci USA 103(24):9190–9195

    Article  PubMed  CAS  Google Scholar 

  2. Wu CJ, Yang XF, McLaughlin S et al (2000) Detection of a potent humoral response associated with immune-induced remission of chronic myelogenous leukemia. J Clin Invest 106(5):705–714

    Article  PubMed  CAS  Google Scholar 

  3. Bhardwaj N (2007) Harnessing the immune system to treat cancer. J Clin Invest 117(5):1130–1136

    Article  PubMed  CAS  Google Scholar 

  4. Grabert RC, Cousens LP, Smith JA et al (2006) Human T cells armed with Her2/neu bispecific antibodies divide, are cytotoxic, and secrete cytokines with repeated stimulation. Clin Cancer Res 12(2):569–576

    Article  PubMed  CAS  Google Scholar 

  5. Cobleigh MA, Vogel CL, Tripathy D et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17(9):2639–2648

    PubMed  CAS  Google Scholar 

  6. Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    Article  PubMed  CAS  Google Scholar 

  7. Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J Clin Oncol 23(19):4265–4274

    Article  PubMed  CAS  Google Scholar 

  8. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 6(4):443–446

    Article  PubMed  CAS  Google Scholar 

  9. Dhodapkar KM, Dhodapkar MV (2005) Recruiting dendritic cells to improve antibody therapy of cancer. Proc Natl Acad Sci USA 102(18):6243–6244

    Article  PubMed  CAS  Google Scholar 

  10. Dhodapkar KM, Kaufman JL, Ehlers M et al (2005) Selective blockade of inhibitory Fc gamma receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc Natl Acad Sci USA 102(8):2910–2915

    Article  PubMed  CAS  Google Scholar 

  11. Dhodapkar MV (2005) Harnessing host immune responses to preneoplasia: promise and challenges. Cancer Immunol Immunother 54(5):409–413

    Article  PubMed  Google Scholar 

  12. DiFronzo LA, Gupta RK, Essner R et al (2002) Enhanced humoral immune response correlates with improved disease-free and overall survival in American joint committee on cancer stage II melanoma patients receiving adjuvant polyvalent vaccine. J Clin Oncol 20(15):3242–3248

    PubMed  Google Scholar 

  13. Riethmuller G, Kufer P (1998) Minimal residual cancer: a target for antibody-based strategies. Naunyn-Schmiedebergs. Arch Pharmacol 358(1):R197

    Google Scholar 

  14. Riethmuller G, Holz E, Schlimok G et al (1998) Monoclonal antibody therapy for resected Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 16(5):1788–1794

    PubMed  CAS  Google Scholar 

  15. Jung J, Yi AK, Zhang X, Choe J, Li L, Choi YS (2002) Distinct response of human B cell subpopulations in recognition of an innate immune signal, CpG DNA. J Immunol 169(5):2368–2373

    PubMed  CAS  Google Scholar 

  16. Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM (1996) CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci USA 93(7):2879–2883

    Article  PubMed  CAS  Google Scholar 

  17. Krieg AM, Yi AK, Matson S et al (1995) Cpg motifs in bacterial-Dna trigger direct B-cell activation. Nature 374(6522):546–549

    Article  PubMed  CAS  Google Scholar 

  18. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  PubMed  CAS  Google Scholar 

  19. Davis HL, Weeranta R, Waldschmidt TJ, Tygrett L, Schorr J, Krieg AM (1998) CpG DNA is a potent enhancer of specific immunity in mice immunized with recombinant hepatitis B surface antigen. J Immunol 160(2):870–876

    PubMed  CAS  Google Scholar 

  20. Carpentier AF, Capelle L, Carpentier A et al (2005) Phase I trial of CpG ODN in recurrent glioblastoma. Clin Cancer Res 11(24):9124S

    Google Scholar 

  21. Friedberg JW, Kim H, McCauley M et al (2005) Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-alpha/beta-inducible gene expression, without significant toxicity. Blood 105(2):489–495

    Article  PubMed  CAS  Google Scholar 

  22. Link BK, Ballas ZK, Weisdorf D et al (2006) Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J Immunother 29(5):558–568

    Article  PubMed  CAS  Google Scholar 

  23. Reusch U, Sundaram M, Davol PA et al (2006) Anti-CD3 x anti-epidermal growth factor receptor (EGFR) bispecific antibody redirects T-cell cytolytic activity to EGFR-positive cancers in vitro and in an animal model. Clin Cancer Res 12(1):183–190

    Article  PubMed  CAS  Google Scholar 

  24. Gall JM, Davol PA, Grabert RC, Deaver M, Lum LG (2005) T cells armed with anti-CD3 x anti-CD20 bispecific antibody enhance killing of CD20(+) malignant B cells and bypass complement-mediated rituximab resistance in vitro. Exp Hematol 33(4):452–459

    Article  PubMed  CAS  Google Scholar 

  25. Lum LG, Orcuttthordarson N, Seigneuret MC, Hansen JA (1982) Invitro regulation of immunoglobulin-synthesis by T-cell sub-populations defined by a new human T-cell antigen (9.3). Cell Immunol 72(1):122–129

    Article  PubMed  CAS  Google Scholar 

  26. Lum LG, Orcuttthordarson N, Seigneuret MC, Storb R (1982) The regulation of Ig synthesis after marrow transplantation.4. T4 and T8 Subset function in patients with chronic graft-vs-host disease. J Immunol 129(1):113–119

    PubMed  CAS  Google Scholar 

  27. Lee JCW, Cevallos AM, Naeem A, Lennard-Jones JE, Farthing MJG (1999) Detection of anti-colon antibodies in inflammatory bowel disease using human cultured colonic cells. Gut 44(2):196–202

    Article  PubMed  CAS  Google Scholar 

  28. Maple L, Lathrop R, Bozich S et al (2004) Development and validation of ELISA for Herceptin detection in human serum. J Immunol Methods 295(1–2):169–182

    Article  PubMed  CAS  Google Scholar 

  29. Groh V, Lil YQQ, Cioca D et al (2005) Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. Proc Natl Acad Sci USA 102(18):6461–6466

    Article  PubMed  CAS  Google Scholar 

  30. Chomarat P, Dantin C, Bennett L, Banchereau J, Palucka AK (2003) TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 171(5):2262–2269

    PubMed  CAS  Google Scholar 

  31. Iwamoto S, Iwai S, Tsujiyama K et al (2007) TNF-alpha drives human CD14(+) monocytes to differentiate into CD70(+) dendritic cells evoking Th1 and Th17 responses. J Immunol 179(3):1449–1457

    PubMed  CAS  Google Scholar 

  32. Vitale M, la Chiesa M, Carlomagno S et al (2005) NK-dependent DC maturation is mediated by TNF alpha and IFN gamma released upon engagement of the NKp30 triggering receptor. Blood 106(2):566–571

    Article  PubMed  CAS  Google Scholar 

  33. Smith KE, Janelidze S, Visse E et al (2007) Synergism between GM-CSF and IFN gamma: Enhanced immunotherapy in mice with glioma. Int J Cancer 120(1):75–80

    Article  PubMed  CAS  Google Scholar 

  34. Aversa G, Cocks B, Punnonen J et al (1993) Il-13-induced B-cell proliferation and Ige synthesis is blocked by an Il-4 mutant protein—support for a shared component of the Il-4 and Il-13 receptors. J Leukoc Biol 93

  35. Kopf M, Ramsay A, Brombacher F et al (1995) Pleiotropic defects of IL-6-deficient mice including early hematopoiesis, T and B cell function, and acute phase responses. Interleukin-6 Type Cytokines 762:308–318

    CAS  Google Scholar 

  36. Kopf M, Herren S, Wiles MV, Pepys MB, Kosco-Vilbois MH (1998) Interleukin 6 influences germinal center development and antibody production via a contribution of C3 complement component. J Exp Med 188(10):1895–1906

    Article  PubMed  CAS  Google Scholar 

  37. Lai YH, Mosmann TR (1999) Mouse IL-13 enhances antibody production in vivo and acts directly on B cells in vitro to increase survival and hence antibody production. J Immunol 162(1):78–87

    PubMed  CAS  Google Scholar 

  38. Mckenzie ANJ, Culpepper JA, Malefyt RD et al (1993) Interleukin-13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci USA 90(8):3735–3739

    Article  PubMed  CAS  Google Scholar 

  39. Morse MA, Lyerly HK, Li YW (1999) The role of IL-13 in the generation of dendritic cells in vitro. J Immunother 22(6):506–513

    Article  PubMed  CAS  Google Scholar 

  40. Sato K, Nagayama H, Tadokoro K, Juji T, Takahashi TA (1999) Interleukin-13 is involved in functional maturation of human peripheral blood monocyte-derived dendritic cells. Exp Hematol 27(2):326–336

    Article  PubMed  CAS  Google Scholar 

  41. Lum LG, Seigneuret MC, Storb RF, Witherspoon RP, Thomas ED (1981) In vitro regulation of immunoglobulin synthesis after marrow transplantation I. T-cell and B-cell deficiencies in patients with and without chronic graft-versus-host disease. Blood 58:431–439

    PubMed  CAS  Google Scholar 

  42. Lum LG, Seigneuret MC, Orcutt-Thordarson N, Noges JE, Storb R (1985) The regulation of immunoglobulin synthesis after HLA-identical bone marrow transplantation: VI. Differential rates of maturation of distinct functional groups within lymphoid subpopulations in patients after human marrow grafting. Blood 65:1422–1433

    PubMed  CAS  Google Scholar 

  43. Waldmann TA, Korsmeyer SJ, Hieter PA, Ravetch JV, Broder S, Leder P (1983) Regulation of the humoral immune-response—from immunoglobulin genes to regulatory T-cell networks. Fed Proc 42(8):2498–2503

    PubMed  CAS  Google Scholar 

  44. Amoroso K, Lipsky PE (1990) Frequency of human B-cells that differentiate in response to anti-cd3-activated T-cells. J Immunol 145(10):3155–3161

    PubMed  CAS  Google Scholar 

  45. Lipsky PE (1990) The induction of human B-cell activation, proliferation and differentiation by anti-cd3-stimulated T-cells—a model of T-cell B-cell collaboration. Res Immunol 141(4–5):424–427

    Article  PubMed  CAS  Google Scholar 

  46. Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC (2005) TCR stimulation with modified anti-CD3 mAb expands CD8(+) T cell population and induces CD8(+)CD25(+) Tregs. J Clin Invest 115(10):2904–2913

    Article  PubMed  CAS  Google Scholar 

  47. Sampson JH, Crotty LE, Lee S et al (2000) Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors. Proc Natl Acad Sci USA 97(13):7503–7508

    Article  PubMed  CAS  Google Scholar 

  48. Yang XF, Wu CJ, McLaughlin S et al (2001) CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia. Proc Natl Acad Sci USA 98(13):7492–7497

    Article  PubMed  CAS  Google Scholar 

  49. Reilly RT, Machiels JPH, Emens LA et al (2001) The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res 61(3):880–883

    PubMed  CAS  Google Scholar 

  50. Park JM, Terabe M, Sakai Y et al (2005) Early role of CD4(+) Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas. J Immunol 174(7):4228–4236

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were funded in part by R01 CA 092344 (L.G.L.), R01 CA 140412 (L.G.L), 5P39 CA 022453 from National Cancer Institute, Translational Grants #6066-06 and #6092-09 from the Leukemia and Lymphoma Society (L.G.L), Susan G. Komen Foundation Translational Grant #BCTR0707125 (L.G.L), and Michigan Cell Therapy Center for Excellence Grant from the State of Michigan #1819, and startup funds from the Barbara Ann Karmanos Cancer Institute.

Conflict of interest

The authors have no financial conflict of interest. L.G.L. is a founder of Transtarget, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, A., Norkina, O. & Lum, L.G. In vitro synthesis of primary specific anti-breast cancer antibodies by normal human peripheral blood mononuclear cells. Cancer Immunol Immunother 60, 1707–1720 (2011). https://doi.org/10.1007/s00262-011-1056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1056-9

Keywords

Navigation