Skip to main content

Advertisement

Log in

Immunotherapy eradicates metastases with reversible defects in MHC class I expression

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor or metastatic cells lose MHC class I (MHC-I) expression during cancer progression as an escape mechanism from immune surveillance. These defects in MHC-I may be reversible by cytokines or different agents (soft lesions) or irreversible due to structural defects (hard lesions). The nature of these MHC-I alterations might determine the success or failure of immunotherapy treatments. In this study, we have used an MHC-I-positive murine fibrosarcoma tumor clone, GR9-A7, which generates multiple lung and lymph node metastases with reversible MHC-I alterations after treatment with IFN-γ. Four different antitumor treatments were carried out after primary tumor excision to determine their capacity to inhibit spontaneous metastatic colonization of the GR9-A7 tumor clone. We found that 2 different immunotherapy protocols (CpG plus autologous irradiated-GR9-A7 cells and protein-bound polysaccharide K (PSK) and 1 chemoimmunotherapy (docetaxel plus PSK) induced eradication of metastases. In contrast, chemotherapy with docetaxel alone produced only partial reduction in the number of metastases. Flow cytometric analysis of lymphocyte populations showed an immunosuppression in GR9-A7 tumor-bearing host, which could be reverted by immunotherapy treatments. Our results suggest that irreversible or reversible MHC-I alterations in tumor target cells may determine its progression or regression independently of the type of immunotherapy used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MHC-I:

Major histocompatibility complex class I

H-2:

Mouse leukocyte antigen

HLA:

Human leukocyte antigen

PSK:

Protein-bound polysaccharide K

BCG:

Bacillus of Calmette-Guérin

MCA:

Methylcholanthrene

PMs:

Pulmonary metastases

LNMs:

Lymph node metastases

References

  1. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380–384

    Article  PubMed  CAS  Google Scholar 

  2. Schadendorf D, Algarra SM, Bastholt L, Cinat G, Dreno B, Eggermont AM, Espinosa E, Guo J, Hauschild A, Petrella T et al (2009) Immunotherapy of distant metastatic disease. Ann Oncol 20(Suppl 6):vi41–vi50

    Google Scholar 

  3. Godelaine D, Carrasco J, Lucas S, Karanikas V, Schuler-Thurner B, Coulie PG, Schuler G, Boon T, Van Pel A (2003) Polyclonal CTL responses observed in melanoma patients vaccinated with dendritic cells pulsed with a MAGE-3.A1 peptide. J Immunol 171:4893–4897

    PubMed  CAS  Google Scholar 

  4. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  PubMed  CAS  Google Scholar 

  5. Anichini A, Vegetti C, Mortarini R (2004) The paradox of T cell-mediated antitumor immunity in spite of poor clinical outcome in human melanoma. Cancer Immunol Immunother 53:855–864

    Article  PubMed  Google Scholar 

  6. de la Cruz-Merino L, Grande-Pulido E, Albero-Tamarit A, Codes-Manuel de Villena ME (2008) Cancer and immune response: old and new evidence for future challenges. Oncologist 13:1246–1254

    Article  Google Scholar 

  7. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  8. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS et al (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175:6169–6176

    PubMed  CAS  Google Scholar 

  9. Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53:844–854

    Article  PubMed  Google Scholar 

  10. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  PubMed  CAS  Google Scholar 

  11. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  PubMed  CAS  Google Scholar 

  12. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13

    Article  PubMed  CAS  Google Scholar 

  13. Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S (2005) Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174:1462–1471

    PubMed  CAS  Google Scholar 

  14. Cabrera T, Lara E, Romero JM, Maleno I, Real LM, Ruiz-Cabello F, Valero P, Camacho FM, Garrido F (2007) HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol Immunother 56:709–717

    Article  PubMed  CAS  Google Scholar 

  15. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60:439–447

    Article  PubMed  CAS  Google Scholar 

  16. Aptsiauri N, Carretero R, Garcia-Lora A, Real LM, Cabrera T, Garrido F (2008) Regressing and progressing metastatic lesions: resistance to immunotherapy is predetermined by irreversible HLA class I antigen alterations. Cancer Immunol Immunother 57:1727–1733

    Article  PubMed  CAS  Google Scholar 

  17. Garrido F, Cabrera T, Aptsiauri N (2010) Hard and soft lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 127:249–256

    PubMed  CAS  Google Scholar 

  18. Fisher M, Yang LX (2002) Anticancer effects and mechanisms of polysaccharide-K (PSK): implications of cancer immunotherapy. Anticancer Res 22:1737–1754

    PubMed  CAS  Google Scholar 

  19. Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J (1994) Efficacy of immunochemotherapy as adjuvant treatment after curative resection of gastric cancer. Study group of Immunochemotherapy with PSK for Gastric Cancer. Lancet 343:1122–1126

    Google Scholar 

  20. Munemoto Y, Iida Y, Ohata K, Saito H, Fujisawa K, Kasahara Y, Mitsui T, Asada Y, Miura S (2004) Significance of postoperative adjuvant immunochemotherapy after curative resection of colorectal cancers: identification of responders incorporating the age factor. Oncol Rep 11:623–635

    PubMed  CAS  Google Scholar 

  21. Ohwada S, Ikeya T, Yokomori T, Kusaba T, Roppongi T, Takahashi T, Nakamura S, Kakinuma S, Iwazaki S, Ishikawa H et al (2004) Adjuvant immunochemotherapy with oral Tegafur/Uracil plus PSK in patients with stage II or III colorectal cancer: a randomised controlled study. Br J Cancer 90:1003–1010

    Article  PubMed  CAS  Google Scholar 

  22. Katoh R, Ooshiro M (2007) Enhancement of antitumor effect of tegafur/uracil (UFT) plus leucovorin by combined treatment with protein-bound polysaccharide, PSK, in mouse models. Cell Mol Immunol 4:295–299

    PubMed  CAS  Google Scholar 

  23. Sakamoto J, Morita S, Oba K, Matsui T, Kobayashi M, Nakazato H, Ohashi Y (2006) Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curatively resected colorectal cancer: a meta-analysis of centrally randomized controlled clinical trials. Cancer Immunol Immunother 55:404–411

    Article  PubMed  CAS  Google Scholar 

  24. Ueda Y, Fujimura T, Kinami S, Hirono Y, Yamaguchi A, Naitoh H, Tani T, Kaji M, Yamagishi H, Miwa K (2006) A randomized phase III trial of postoperative adjuvant therapy with S-1 alone versus S-1 plus PSK for stage II/IIIA gastric cancer: Hokuriku-Kinki immunochemo-therapy study group-gastric cancer. Jpn J Clin Oncol 36:519–522

    Article  PubMed  Google Scholar 

  25. Garrido A, Perez M, Delgado C, Garrido ML, Rojano J, Algarra I, Garrido F (1986) Influence of class I H-2 gene expression on local tumor growth. Description of a model obtained from clones derived from a solid BALB/c tumor. Exp Clin Immunogenet 3:98–110

    PubMed  CAS  Google Scholar 

  26. Perez M, Algarra I, Ljunggren HG, Caballero A, Mialdea MJ, Gaforio JJ, Klein G, Karre K, Garrido F (1990) A weakly tumorigenic phenotype with high MHC class-I expression is associated with high metastatic potential after surgical removal of the primary murine fibrosarcoma. Int J Cancer 46:258–261

    Article  PubMed  CAS  Google Scholar 

  27. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  PubMed  CAS  Google Scholar 

  28. Jimenez-Medina E, Berruguilla E, Romero I, Algarra I, Collado A, Garrido F, Garcia-Lora A (2008) The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis. BMC Cancer 8:78

    Article  PubMed  Google Scholar 

  29. Ellis LM, Fidler IJ (2010) Finding the tumor copycat. Therapy fails, patients don’t. Nat Med 16:974–975

    Article  PubMed  CAS  Google Scholar 

  30. Benitez R, Godelaine D, Lopez-Nevot MA, Brasseur F, Jimenez P, Marchand M, Oliva MR, van Baren N, Cabrera T, Andry G et al (1998) Mutations of the β2-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of 2 patients immunized with MAGE peptides. Tiss Antigens 52:520–529

    Article  CAS  Google Scholar 

  31. Riker A, Cormier J, Panelli M, Kammula U, Wang E, Abati A, Fetsch P, Lee KH, Steinberg S, Rosenberg S et al (1999) Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126:112–120

    Article  PubMed  CAS  Google Scholar 

  32. Hoffmann TK, Nakano K, Elder EM, Dworacki G, Finkelstein SD, Appella E, Whiteside TL, DeLeo AB (2000) Generation of T cells specific for the wild-type sequence p53 (264–272) peptide in cancer patients: implications for immunoselection of epitope loss variants. J Immunol 165:5938–5944

    PubMed  CAS  Google Scholar 

  33. Carretero R, Cabrera T, Gil H, Saenz-Lopez P, Maleno I, Aptsiauri N, Cozar JM, Garrido F (2010) BCG immunotherapy of bladder cancer induces selection of HLA class I-deficient tumor cells. Int J Cancer [Epub ahead of print]

  34. Jimenez E, Garcia-Lora A, Martinez M, Garrido F (2005) Identification of the protein components of protein-bound polysaccharide that interact with NKL cells. Cancer Immunol Immunother 54:395–399

    Article  PubMed  CAS  Google Scholar 

  35. Okuzawa M, Shinohara H, Kobayashi T, Iwamoto M, Toyoda M, Tanigawa N (2002) PSK: a protein-bound polysaccharide, overcomes defective maturation of dendritic cells exposed to tumor-derived factors in vitro. Int J Oncol 20:1189–1195

    PubMed  CAS  Google Scholar 

  36. Asai H, Iijima H, Matsunaga K, Oguchi Y, Katsuno H, Maeda K (2008) Protein-bound polysaccharide K augments IL-2 production from murine mesenteric lymph node CD4+ T cells by modulating T cell receptor signaling. Cancer Immunol Immunother 57:1647–1655

    Article  PubMed  CAS  Google Scholar 

  37. Algarra I, Ohlen C, Perez M, Ljunggren HG, Klein G, Garrido F, Karre K (1989) NK sensitivity and lung clearance of MHC-class-I-deficient cells within a heterogeneous fibrosarcoma. Int J Cancer 44:675–680

    Article  PubMed  CAS  Google Scholar 

  38. Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, Lindner D, Williams BR (2004) Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res 64:5850–5860

    Article  PubMed  CAS  Google Scholar 

  39. Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7:131–137

    Article  PubMed  CAS  Google Scholar 

  40. Ohwada S, Ogawa T, Makita F, Tanahashi Y, Ohya T, Tomizawa N, Satoh Y, Kobayashi I, Izumi M, Takeyoshi I et al (2006) Beneficial effects of protein-bound polysaccharide K+ tegafur/uracil in patients with stage II or III colorectal cancer: analysis of immunological parameters. Oncol Rep 15:861–868

    PubMed  CAS  Google Scholar 

  41. Oba K, Teramukai S, Kobayashi M, Matsui T, Kodera Y, Sakamoto J (2007) Efficacy of adjuvant immunochemotherapy with polysaccharide K for patients with curative resections of gastric cancer. Cancer Immunol Immunother 56:905–911

    Article  PubMed  CAS  Google Scholar 

  42. Garnett CT, Schlom J, Hodge JW (2008) Combination of docetaxel and recombinant vaccine enhances T cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin Cancer Res 14:3536–3544

    Article  PubMed  CAS  Google Scholar 

  43. Kohlmeyer J, Cron M, Landsberg J, Bald T, Renn M, Mikus S, Bondong S, Wikasari D, Gaffal E, Hartmann G et al (2009) Complete regression of advanced primary and metastatic mouse melanomas following combination chemoimmunotherapy. Cancer Res 69:6265–6274

    Article  PubMed  CAS  Google Scholar 

  44. Arlen PM, Gulley JL, Parker C, Skarupa L, Pazdur M, Panicali D, Beetham P, Tsang KY, Grosenbach DW, Feldman J et al (2006) A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12:1260–1269

    Article  PubMed  CAS  Google Scholar 

  45. Nistico P, Capone I, Palermo B, Del Bello D, Ferraresi V, Moschella F, Arico E, Valentini M, Bracci L, Cognetti F et al (2009) Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int J Cancer 124:130–139

    Article  PubMed  CAS  Google Scholar 

  46. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124

    Article  PubMed  CAS  Google Scholar 

  47. Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F (2001) Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. Int J Cancer 91:109–119

    Article  PubMed  CAS  Google Scholar 

  48. Garcia-Lora A, Martinez M, Algarra I, Gaforio JJ, Garrido F (2003) MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer 106:521–527

    Article  PubMed  CAS  Google Scholar 

  49. Garrido F, Algarra I, Garcia-Lora AM (2010) The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible hard lesions. Cancer Immunol Immunother 59:1601–1606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank I. Linares and E. Arias for technical assistance and staff of the Departments of Hospital Pharmacy and Radiotherapeutic Oncology of the Virgen de las Nieves University Hospital for their collaboration. They also thank Dr. Natalia Aptsiauri for helpful discussion and Richard Davies for editorial assistance. C. Garrido was supported by the MEC (FPU, 1631) and A.M. García-Lora by FIS-Research Contract CP03/0111 and Stabilization Contract of Fundación Progreso y Salud. This study was partially funded by grants from the FIS (CP03/0111; PI 08/1265; RTICC, RETIC RD 06/020), Consejería de Salud and PAI (Group CTS-143 and projects CTS-695 and CTS-3952) from the Junta de Andalucía in Spain; by the ENACT project (LSHC-CT-2004-503306) and by the Cancer Immunotherapy project (OJ 2004/c158, 18234) of the European Community; and by Kureha Chemical Industry, Tokyo, Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angel García-Lora or Federico Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido, C., Romero, I., Berruguilla, E. et al. Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunol Immunother 60, 1257–1268 (2011). https://doi.org/10.1007/s00262-011-1027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1027-1

Keywords

Navigation