Skip to main content

Advertisement

Log in

IL-4 inhibits the TNF-α induced proliferation of renal cell carcinoma (RCC) and cooperates with TNF-α to induce apoptotic and cytokine responses by RCC: implications for antitumor immune responses

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objective: While previous reports clearly demonstrated antiproliferative effects of IL-4 on renal cell carcinoma (RCC) in vitro, the administration of IL-4 to patients with metastatic RCC in clinical trials could not recapitulate the promising preclinical results. In the present study we wanted to examine the context of IL-4 action and to establish conditions of enhanced IL-4 efficacy. Methods: Primary and permanent human RCC cells were cultured in either serum-supplemented or chemically defined, serum-free culture medium in the presence or absence of cytokines. Cell proliferation was assessed as [3H]-thymidine incorporation. Cell apoptosis was measured using the fluorescent DNA intercalator 7-aminoactinomycin D and flow cytometry. In addition, culture media conditioned by RCC were subjected to cytokine antibody array and cytokine multiplex analysis. Results: Our results indicate that the previously reported antiproliferative effects of IL-4 are serum-dependent. Under serum-free conditions, IL-4 failed to exhibit growth-inhibitory effects or was even growth-stimulatory. In a chemically defined, serum-free medium (AIM-V), however, IL-4 inhibited the TNF-α induced proliferation of RCC. IL-4 and TNF-α synergistically induced apoptosis of RCC as well as a complex cytokine response by RCC, which included the synergistic upregulation of RANTES and MCP-1. Conclusions: IL-4 alone has little effect on the spontaneous proliferation of RCC but can prevent the enhancement of proliferation induced by growth promoters like FBS and TNF-α. The concomitant growth inhibitory, apoptosis-inducing, and cytokine-enhancing effects of IL-4 in combination with TNF-α on RCC support the view that Th2 cytokines may be required for productive immune responses against RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCR:

Chemokine (C-C motif) receptor 3

CTL:

Cytotoxic T lymphocyte

ECL:

Enhanced chemoluminescence

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

FACS:

Fluorescence activated cell sorting

FBS:

Fetal bovine serum

FGF:

Fibroblast growth factor

GDNF:

Glial cell derived neurotrophic factor

GRO:

Growth-related oncogene

HGF:

Hepatocyte growth factor

HRP:

Horse radish peroxidase

IFN:

Interferon

IL:

Interleukin

MAP:

MultiAnalyte profiling

MCP-1:

Monocyte chemoattractant protein

M-CSF:

Macrophage colony-stimulating factor

MHC:

Major histocompatibility complex

NAP:

Neutrophil activating protein

RANTES:

Regulated upon activation, normal T-cell expressed, and presumably secreted

RCC:

Renal cell carcinoma

Th:

T helper

TNF:

Tumor necrosis factor

TIMP:

Tissue inhibitor of metalloproteinase

References

  1. Motzer RJ, Bander NH, Nanus DM (1996) Renal-cell carcinoma. N Engl J Med 335:865

    Article  PubMed  CAS  Google Scholar 

  2. Motzer RJ, Bacik J, Mazumdar M (2004) Prognostic factors for survival of patients with stage IV renal cell carcinoma: Memorial Sloan-Kettering Cancer Center experience. Clin Cancer Res 10:6302S

    Article  PubMed  CAS  Google Scholar 

  3. Thurnher M, Radmayr C, Hobisch A, Bock G, Romani N, Bartsch G, Klocker H (1995) Tumor-infiltrating T lymphocytes from renal-cell carcinoma express B7–1 (CD80): T-cell expansion by T-T cell co-stimulation. Int J Cancer 62:559

    Article  PubMed  CAS  Google Scholar 

  4. Ikemoto S, Yoshida N, Narita K, Wada S, Kishimoto T, Sugimura K, Nakatani T (2003) Role of tumor-associated macrophages in renal cell carcinoma. Oncol Rep 10:1843

    PubMed  CAS  Google Scholar 

  5. Thurnher M, Radmayr C, Ramoner R, Ebner S, Bock G, Klocker H, Romani N, Bartsch G (1996) Human renal-cell carcinoma tissue contains dendritic cells. Int J Cancer 68:1

    Article  PubMed  CAS  Google Scholar 

  6. Ikemoto S, Narita K, Yoshida N, Wada S, Kishimoto T, Sugimura K, Nakatani T (2003) Effects of tumor necrosis factor alpha in renal cell carcinoma. Oncol Rep 10:1947

    PubMed  CAS  Google Scholar 

  7. Alberti L, Thomachot MC, Bachelot T, Menetrier-Caux C, Puisieux I, Blay JY (2004) IL-6 as an intracrine growth factor for renal carcinoma cell lines. Int J Cancer 111:653

    Article  PubMed  CAS  Google Scholar 

  8. Nanus DM, Pfeffer LM, Bander NH, Bahri S, Albino AP (1990) Antiproliferative and antitumor effects of alpha-interferon in renal cell carcinomas: correlation with the expression of a kidney-associated differentiation glycoprotein. Cancer Res 50:4190

    PubMed  CAS  Google Scholar 

  9. Kuebler JP, Oberley TD, Meisner LF, Sidky YA, Reznikoff CA, Borden EC, Cummings KB, Bryan GT (1987) Effect of interferon alpha, interferon beta, and interferon gamma on the in vitro growth of human renal adenocarcinoma cells. Invest New Drugs 5:21

    Article  PubMed  CAS  Google Scholar 

  10. Cheon J, Chung DJ, Kim JJ, Koh SK, Sohn J (1996) Inhibitory effects of interleukin-4 on human renal cell carcinoma cells in vitro: in combination with interferon-alpha, tumor necrosis factor-alpha or interleukin-2. Int J Urol 3:196

    Article  PubMed  CAS  Google Scholar 

  11. Obiri NI, Hillman GG, Haas GP, Sud S, Puri RK (1993) Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro by interleukin-4. J Clin Invest 91:88

    Article  PubMed  CAS  Google Scholar 

  12. Yu SJ, Kim HS, Cho SW, Sohn J (2004) IL-4 inhibits proliferation of renal carcinoma cells by increasing the expression of p21WAF1 and IRF-1. Exp Mol Med 36:372

    PubMed  CAS  Google Scholar 

  13. Obiri NI, Husain SR, Debinski W, Puri RK (1996) Interleukin 13 inhibits growth of human renal cell carcinoma cells independently of the p140 interleukin 4 receptor chain. Clin Cancer Res 2:1743

    PubMed  CAS  Google Scholar 

  14. Margolin K, Aronson FR, Sznol M, Atkins MB, Gucalp R, Fisher RI, Sunderland M, Doroshow JH, Ernest ML, Mier JW et al (1994) Phase II studies of recombinant human interleukin-4 in advanced renal cancer and malignant melanoma. J Immunother Emphasis Tumor Immunol 15:147

    PubMed  CAS  Google Scholar 

  15. Whitehead RP, Unger JM, Goodwin JW, Walker MJ, Thompson JA, Flaherty LE, Sondak VK (1998) Phase II trial of recombinant human interleukin-4 in patients with disseminated malignant melanoma: a Southwest Oncology Group study. J Immunother 21:440

    Article  PubMed  CAS  Google Scholar 

  16. Whitehead RP, Lew D, Flanigan RC, Weiss GR, Roy V, Glode ML, Dakhil SR, Crawford ED (2002) Phase II trial of recombinant human interleukin-4 in patients with advanced renal cell carcinoma: a southwest oncology group study. J Immunother 25:352

    Article  PubMed  CAS  Google Scholar 

  17. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417

    PubMed  CAS  Google Scholar 

  18. Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732

    PubMed  CAS  Google Scholar 

  19. Johrer K, Zelle-Rieser C, Perathoner A, Moser P, Hager M, Ramoner R, Gander H, Holtl L, Bartsch G, Greil R, Thurnher M (2005) Up-regulation of functional chemokine receptor CCR3 in human renal cell carcinoma. Clin Cancer Res 11:2459

    Article  PubMed  Google Scholar 

  20. Oosterwijk E, Divgi CR, Brouwers A, Boerman OC, Larson SM, Mulders P, Old LJ (2003) Monoclonal antibody-based therapy for renal cell carcinoma. Urol Clin North Am 30:623

    Article  PubMed  Google Scholar 

  21. Ledru E, Fevrier M, Lecoeur H, Garcia S, Boullier S, Gougeon ML (2003) A nonsecreted variant of interleukin-4 is associated with apoptosis: implication for the T helper-2 polarization in HIV infection. Blood 101:3102

    Article  PubMed  CAS  Google Scholar 

  22. Hemmerlein B, Johanns U, Kugler A, Reffelmann M, Radzun HJ (2001) Quantification and in situ localization of MCP-1 mRNA and its relation to the immune response of renal cell carcinoma. Cytokine 13:227

    Article  PubMed  CAS  Google Scholar 

  23. Abruzzo LV, Thornton AJ, Liebert M, Grossman HB, Evanoff H, Westwick J, Strieter RM, Kunkel SL (1992) Cytokine-induced gene expression of interleukin-8 in human transitional cell carcinomas and renal cell carcinomas. Am J Pathol 140:365

    PubMed  CAS  Google Scholar 

  24. Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, Dinney CP (2001) Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 158:735

    PubMed  CAS  Google Scholar 

  25. Kallakury BV, Karikehalli S, Haholu A, Sheehan CE, Azumi N, Ross JS (2001) Increased expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of metalloproteinases 1 and 2 correlate with poor prognostic variables in renal cell carcinoma. Clin Cancer Res 7:3113

    PubMed  CAS  Google Scholar 

  26. Heiz M, Grunberg J, Schubiger PA, Novak-Hofer I (2004) Hepatocyte growth factor-induced ectodomain shedding of cell adhesion molecule L1: role of the L1 cytoplasmic domain. J Biol Chem 279:31149

    Article  PubMed  CAS  Google Scholar 

  27. El-Ghoneimi A, Berrebi D, Levacher B, Nepote V, Infante M, Paris R, Simonneau M, Aigrain Y, Peuchmaur M (2002) Glial cell line derived neurotrophic factor is expressed by epithelia of human renal dysplasia. J Urol 168:2624

    Article  PubMed  CAS  Google Scholar 

  28. Fujisawa T, Kato Y, Atsuta J, Terada A, Iguchi K, Kamiya H, Yamada H, Nakajima T, Miyamasu M, Hirai K (2000) Chemokine production by the BEAS-2B human bronchial epithelial cells: differential regulation of eotaxin, IL-8, and RANTES by TH2- and TH1-derived cytokines. J Allergy Clin Immunol 105:126

    Article  PubMed  CAS  Google Scholar 

  29. Miyamasu M, Misaki Y, Yamaguchi M, Yamamoto K, Morita Y, Matsushima K, Nakajima T, Hirai K (2000) Regulation of human eotaxin generation by Th1-/Th2-derived cytokines. Int Arch Allergy Immunol 122(Suppl)1:54

    Google Scholar 

  30. Mochizuki M, Bartels J, Mallet AI, Christophers E, Schroder JM (1998) IL-4 induces eotaxin: a possible mechanism of selective eosinophil recruitment in helminth infection and atopy. J Immunol 160:60

    PubMed  CAS  Google Scholar 

  31. Teran LM, Mochizuki M, Bartels J, Valencia EL, Nakajima T, Hirai K, Schroder JM (1999) Th1- and Th2-type cytokines regulate the expression and production of eotaxin and RANTES by human lung fibroblasts. Am J Respir Cell Mol Biol 20:777

    PubMed  CAS  Google Scholar 

  32. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357

    Article  PubMed  CAS  Google Scholar 

  33. Schuler T, Qin Z, Ibe S, Noben-Trauth N, Blankenstein T (1999) T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J Exp Med 189:803

    Article  PubMed  CAS  Google Scholar 

  34. Schuler T, Kammertoens T, Preiss S, Debs P, Noben-Trauth N, Blankenstein T (2001) Generation of tumor-associated cytotoxic T lymphocytes requires interleukin 4 from CD8(+) T cells. J Exp Med 194:1767

    Article  PubMed  CAS  Google Scholar 

  35. Noffz G, Qin Z, Kopf M, Blankenstein T (1998) Neutrophils but not eosinophils are involved in growth suppression of IL-4-secreting tumors. J Immunol 160:345

    PubMed  CAS  Google Scholar 

  36. Simons JW, Jaffee EM, Weber CE, Levitsky HI, Nelson WG, Carducci MA, Lazenby AJ, Cohen LK, Finn CC, Clift SM, Hauda KM, Beck LA, Leiferman KM, Owens AH Jr, Piantadosi S, Dranoff G, Mulligan RC, Pardoll DM, Marshall FF (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte–macrophage colony-stimulating factor gene transfer. Cancer Res 57:1537

    PubMed  CAS  Google Scholar 

  37. Holtl L, Rieser C, Papesh C, Ramoner R, Bartsch G, Thurnher M (1998) CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet 352:1358

    Article  PubMed  CAS  Google Scholar 

  38. Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M (1999) Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol 161:777

    Article  PubMed  CAS  Google Scholar 

  39. Holtl L, Zelle-Rieser C, Gander H, Papesh C, Ramoner R, Bartsch G, Rogatsch H, Barsoum AL, Coggin JH Jr, Thurnher M (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8:3369

    PubMed  CAS  Google Scholar 

  40. Holtl L, Ramoner R, Zelle-Rieser C, Gander H, Putz T, Papesh C, Nussbaumer W, Falkensammer C, Bartsch G, Thurnher M (2004) Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide. Cancer Immunol Immunother 54:663

    Article  PubMed  CAS  Google Scholar 

  41. Rieser C, Ramoner R, Holtl L, Rogatsch H, Papesh C, Stenzl A, Bartsch G, Thurnher M (1999) Mature dendritic cells induce T-helper type-1-dominant immune responses in patients with metastatic renal cell carcinoma. Urol Int 63:151

    Article  PubMed  CAS  Google Scholar 

  42. Naredi P (2002) Histamine as an adjunct to immunotherapy. Semin Oncol 29:31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Tilak, the holding company of our hospital for continuous support. This work was supported by a grant of the kompetenzzentrum medizin tirol (kmt) awarded to M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thurnher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkensammer, C., Jöhrer, K., Gander, H. et al. IL-4 inhibits the TNF-α induced proliferation of renal cell carcinoma (RCC) and cooperates with TNF-α to induce apoptotic and cytokine responses by RCC: implications for antitumor immune responses. Cancer Immunol Immunother 55, 1228–1237 (2006). https://doi.org/10.1007/s00262-006-0122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0122-1

Keywords

Navigation