Skip to main content

Advertisement

Log in

Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In this phase I/II study, we evaluated the feasibility, safety and efficacy of allogeneic dendritic cells (DCs) with or without cyclophosphamide in the treatment of patients with metastatic renal cell carcinoma (RCC). Immunomagnetic beads were used to isolate CD14+ monocytes from healthy donor leukapheresis products, and CD83+ antigen-pulsed monocyte-derived DCs (moDCs) loaded with tumor lysate and keyhole limpet hemocyanin (KLH) were generated. Twelve patients were treated with allogeneic moDCs alone, while ten patients also received cyclophosphamide on days 4 and 3 prior to vaccination. Of the 22 patients enrolled, 20 received full treatment consisting of at least three vaccinations at monthly intervals. Two mixed responses with substantial tumor regression were observed. In 3 patients, disease stabilization occurred, in 13 patients disease progressed and 4 patients were lost to follow-up. Overall, immune responses against KLH and tumor lysate were weak or absent; however, the strongest increases in antigen-independent and KLH-specific responses were observed in the 2 patients with mixed responses. In addition, 1 of them showed a substantial increase in oncofetal antigen (OFA)-specific IFN-γ production. Importantly, the 2 mixed responders and 1 patient with stable disease belonged to the cyclophosphamide group. Median overall survival in the cyclophosphamide group was 23.2 and 20.3 months in the group that received allogeneic moDCs alone. Allogeneic immunotherapy with moDCs is feasible and well tolerated. However, the immunogenicity of allogeneic moDCs is clearly less pronounced than that of autologous moDC immunotherapy. Cyclophosphamide may have the capacity to augment DC-induced antitumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Motzer RJ, Bander NH, Nanus DM (1996) Renal-cell carcinoma. N Engl J Med 335:865

    Article  CAS  PubMed  Google Scholar 

  2. Mulders P, Figlin R, deKernion JB, Wiltrout R, Linehan M, Parkinson D, deWolf W, Belldegrun A (1997) Renal cell carcinoma: recent progress and future directions. Cancer Res 57:5189

    CAS  PubMed  Google Scholar 

  3. Pawelec G, Rees RC (2002) Cancer vaccination progress. Trends Mol Med 8:545

    Article  PubMed  Google Scholar 

  4. Ward S, Casey D, Labarthe MC, Whelan M, Dalgleish A, Pandha H, Todryk S (2002) Immunotherapeutic potential of whole tumour cells. Cancer Immunol Immunother 51:351

    Article  PubMed  Google Scholar 

  5. Whelan M, Whelan J, Russell N, Dalgleish A (2003) Cancer immunotherapy: an embarrassment of riches? Drug Discov Today 8:253

    Article  PubMed  Google Scholar 

  6. Thurnher M, Rieser C, Höltl L, Papesh C, Ramoner R, Bartsch G (1998) Dendritic cell-based immunotherapy of renal cell carcinoma. Urol Int 61:67

    Article  CAS  PubMed  Google Scholar 

  7. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245

    Article  CAS  PubMed  Google Scholar 

  8. Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182:389

    Article  CAS  PubMed  Google Scholar 

  9. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109

    Article  CAS  PubMed  Google Scholar 

  10. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180:83

    Article  CAS  PubMed  Google Scholar 

  11. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A (1997) Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388:782

    Article  CAS  PubMed  Google Scholar 

  12. Rieser C, Böck G, Klocker H, Bartsch G, Thurnher M (1997) Prostaglandin E2 and tumor necrosis factor alpha cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production. J Exp Med 186:1603

    Article  CAS  PubMed  Google Scholar 

  13. Brossart P, Wirths S, Brugger W, Kanz L (2001) Dendritic cells in cancer vaccines. Exp Hematol 29:1247

    Article  CAS  Google Scholar 

  14. Fabre JW (2001) The allogeneic response and tumor immunity. Nat Med 7:649

    Article  CAS  PubMed  Google Scholar 

  15. Kleindienst P, Brocker T (2003) Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo. J Immunol 170:2817

    Google Scholar 

  16. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063

    Article  CAS  PubMed  Google Scholar 

  17. Berd D, Maguire HC Jr, Mastrangelo MJ (1984) Potentiation of human cell-mediated and humoral immunity by low-dose cyclophosphamide. Cancer Res 44:5439

    CAS  PubMed  Google Scholar 

  18. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, Parks WP (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst 51:1417

    CAS  PubMed  Google Scholar 

  19. Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58:732

    CAS  PubMed  Google Scholar 

  20. Mulders P, Bleumer I, Oosterwijk E (2003) Tumor antigens and markers in renal cell carcinoma. Urol Clin North Am 30:455

    Google Scholar 

  21. Oosterwijk E, Bander NH, Divgi CR, Welt S, Wakka JC, Finn RD, Carswell EA, Larson SM, Warnaar SO, Fleuren GJ et al (1993) Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J Clin Oncol 11:738

    CAS  PubMed  Google Scholar 

  22. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135

    Google Scholar 

  23. Höltl L, Zelle-Rieser C, Gander H, Papesh C, Ramoner R, Bartsch G, Rogatsch H, Barsoum AL, Coggin JH Jr, Thurnher M (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8:3369

    PubMed  Google Scholar 

  24. Schwartz KA, Slichter S J, Harker LA (1982) Immune-mediated platelet destruction and thrombocytopenia in patients with solid tumours. Br J Haematol 51:17

    CAS  PubMed  Google Scholar 

  25. Tarraza HM, Carroll R, De Cain M, Jones M (1991) Recurrent ovarian carcinoma: presentation as idiopathic thrombocytopenic purpura and a splenic mass. Eur J Gynaecol Oncol 12:439

    CAS  PubMed  Google Scholar 

  26. Kamra D, Boselli J, Sloane BB, Gladstone DE (2002) Renal cell carcinoma induced Coombs negative autoimmune hemolytic anemia and severe thrombocytopenia responsive to nephrectomy. J Urol 167:1395

    Article  PubMed  Google Scholar 

  27. Schuler G, Schuler-Thurner B, Steinman RM (2003) The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 15:138

    Article  CAS  PubMed  Google Scholar 

  28. Höltl L, Rieser C, Papesh C, Ramoner R, Bartsch G, Thurnher M (1998) CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet 352:1358

    CAS  Google Scholar 

  29. Höltl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M (1999) Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol 161:777

    Article  CAS  PubMed  Google Scholar 

  30. Knight SC, Iqball S, Roberts MS, Macatonia S, Bedford PA (1998) Transfer of antigen between dendritic cells in the stimulation of primary T cell proliferation. Eur J Immunol 28:1636

    Google Scholar 

  31. Turley SJ, Inaba K, Garrett WS, Ebersold M, Unternaehrer J, Steinman RM, Mellman I (2000) Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288:522

    Article  CAS  PubMed  Google Scholar 

  32. Livingston PO, Cunningham-Rundles S, Marfleet G, Gnecco C, Wong GY, Schiffman G, Enker WE, Hoffman MK (1987) Inhibition of suppressor-cell activity by cyclophosphamide in patients with malignant melanoma. J Biol Response Mod 6:392

    CAS  PubMed  Google Scholar 

  33. Askenase PW, Hayden BJ, Gershon RK (1975) Augmentation of delayed-type hypersensitivity by doses of cyclophosphamide which do not affect antibody responses. J Exp Med 141:697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Joseph H. Coggin Jr and Adel Barsoum for providing recombinant oncofetal antigen. This work was supported by a grant of the kompetenzzentrum medizin tirol (KMT) to Martin Thurnher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Thurnher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höltl, L., Ramoner, R., Zelle-Rieser, C. et al. Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide. Cancer Immunol Immunother 54, 663–670 (2005). https://doi.org/10.1007/s00262-004-0629-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0629-2

Keywords

Navigation