Skip to main content

Advertisement

Log in

Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: Therapeutic effect against cervical cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

With the successful identification of many tumor-specific antigens, tumor-associated antigens, and the potential of using unfractioned tumor cell derivatives as tumor antigens, a system and/or adjuvant that can deliver these antigens and help them to induce strong and effective anti-tumor immune responses is greatly needed. Previously, we reported that a MHC class I-restricted peptide epitope derived from human papillomavirus (HPV) 16 E7 protein, when incorporated into a clinically proven safe LPD (liposome-polycation-DNA) particle, was able to effectively eradicate tumors established in mice. Cervical cancer is the second most common cancer among women worldwide. HPV infection is clearly linked to this cancer. Vaccines based on the early (E) gene products of HPV could be effective in controlling it. However, besides the fact that epitope vaccines have many limitations particularly, concerning the diverse HLAs in humans, the use of the epitope as an antigen prevented us from fully characterizing the immune responses induced by the LPD as a vaccine carrier and/or adjuvant in previous studies. In the present study, by using the HPV 16 E7 protein as an antigen, we first showed that LPD, as a vaccine carrier and adjuvant induced strong and robust immune responses, both cellular and antibody. We then showed that immunization with LPD particles incorporated with either the wild type HPV 16 E7 protein or a potentially safer mutant induced strong immune responses that caused complete regressions of a model cervical cancer tumor established in murines. LPD could be a potent vaccine carrier and/or adjuvant for many antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blattman JN, Greenberg PD (2004) Cancer immunotherapy: a treatment for the masses. Science 305:200–205

    Google Scholar 

  2. Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30:1–7

    Google Scholar 

  3. Carralot JP, Probst J, Hoerr I, Scheel B, Teufel R, Jung G, Rammensee HG, Pascolo S (2004) Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol Life Sci 61:2418–2424

    Google Scholar 

  4. Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE, Morris JC (2004) Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 113:1515–1525

    Google Scholar 

  5. Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50:3–15

    Google Scholar 

  6. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    Google Scholar 

  7. Matsuda K, Tsunoda T, Tanaka H, Umano Y, Tanimura H, Nukaya I, Takesako K, Yamaue H (2004) Enhancement of cytotoxic T-lymphocyte responses in patients with gastrointestinal malignancies following vaccination with CEA peptide-pulsed dendritic cells. Cancer Immunol Immunother 53:609–616

    Google Scholar 

  8. Mayordomo JI, Loftus DJ, Sakamoto H, CM De Cesare, Appasamy PM, Lotze MT, Storkus WJ, Appella E, DeLeo AB (1996) Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 183:1357–1365

    Google Scholar 

  9. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332

    Google Scholar 

  10. Butch AW, Kelly KA, Munshi NC (2001) Dendritic cells derived from multiple myeloma patients efficiently internalize different classes of myeloma protein. Exp Hematol 29:85–92

    Google Scholar 

  11. Davis CB, Dikic I, Unutmaz D, Hill CM, Arthos J, Siani MA, Thompson DA, Schlessinger J, Littman DR (1997) Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J Exp Med 186:1793–1798

    Google Scholar 

  12. Goldman F, Crabtree J, Hollenback C, Koretzky G (1997) Sequestration of p56(lck) by gp120, a model for TCR desensitization. J Immunol 158:2017–2024

    Google Scholar 

  13. Brown K, Gao W, Alber S, Trichel A, M Murphey-Corb, Watkins SC, Gambotto A, Barratt-Boyes SM (2003) Adenovirus-transduced dendritic cells injected into skin or lymph node prime potent simian immunodeficiency virus-specific T cell immunity in monkeys. J Immunol 171:6875–6882

    Google Scholar 

  14. Granelli-Piperno A, Zhong L, Haslett P, Jacobson J, Steinman RM (2000) Dendritic cells, infected with vesicular stomatitis virus-pseudotyped HIV-1, present viral antigens to CD4+ and CD8+ T cells from HIV-1-infected individuals. J Immunol 165:6620–6626

    Google Scholar 

  15. Humrich J, Jenne L (2003) Viral vectors for dendritic cell-based immunotherapy. Curr Top Microbiol Immunol 276:241–259

    Google Scholar 

  16. Manickan E, Kanangat S, Rouse RJ, Yu Z, Rouse BT (1997) Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukoc Biol 61:125–132

    Google Scholar 

  17. Sharma S, Miller PW, Stolina M, Zhu L, Huang M, Paul RW, Dubinett SM (1997) Multicomponent gene therapy vaccines for lung cancer: effective eradication of established murine tumors in vivo with interleukin-7/herpes simplex thymidine kinase-transduced autologous tumor and ex vivo activated dendritic cells. Gene Ther 4:1361–1370

    Google Scholar 

  18. Smith SG, Patel PM, Porte J, Selby PJ, Jackson AM (2001) Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Clin Cancer Res 7:4253–4261

    Google Scholar 

  19. Franco EL, Schlecht NF, Saslow D (2003) The epidemiology of cervical cancer. Cancer J 9:348–359

    Google Scholar 

  20. de Villiers EM (1994) Human pathogenic papillomavirus types: an update. Curr Top Microbiol Immunol 186:1–12

    Google Scholar 

  21. Munger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228

    Google Scholar 

  22. Villa LL (1997) Human papillomaviruses and cervical cancer. Adv Cancer Res 71:321–341

    Google Scholar 

  23. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505

    Google Scholar 

  24. Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME et al (1996) A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet 347:1523–1527

    Google Scholar 

  25. Munger K, Phelps WC (1993) The human papillomavirus E7 protein as a transforming and transactivating factor. Biochim Biophys Acta 1155:111–123

    Google Scholar 

  26. Schiller JT, Lowy DR (2001) Papillomavirus-like particle based vaccines: cervical cancer and beyond. Expert Opin Biol Ther 1:571–581

    Google Scholar 

  27. Tobery TW, Smith JF, Kuklin N, Skulsky D, Ackerson C, Huang L, Chen L, Cook JC, McClements WL, Jansen KU (2003) Effect of vaccine delivery system on the induction of HPV16L1-specific humoral and cell-mediated immune responses in immunized rhesus macaques. Vaccine 21:1539–1547

    Google Scholar 

  28. Zhang LF, Zhou J, Chen S, Cai LL, Bao QY, Zheng FY, Lu JQ, Padmanabha J, Hengst K, Malcolm K et al (2000) HPV6b virus like particles are potent immunogens without adjuvant in man. Vaccine 18:1051–1058

    Google Scholar 

  29. Hagensee ME, Olson NH, Baker TS, Galloway DA (1994) Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J Virol 68:4503–4505

    Google Scholar 

  30. Chen CH, Wang TL, Hung CF, Pardoll DM, Wu TC (2000) Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine 18:2015–2022

    Google Scholar 

  31. Chen LP, Thomas EK, Hu SL, Hellstrom I, Hellstrom KE (1991) Human papillomavirus type 16 nucleoprotein E7 is a tumor rejection antigen. Proc Natl Acad Sci U S A 88:110–114

    Google Scholar 

  32. Cassetti MC, McElhiney SP, Shahabi V, Pullen JK, IC Le Poole, Eiben GL, Smith LR, Kast WM (2004) Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 22:520–527

    Google Scholar 

  33. Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA (2000) Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol 121:216–225

    Google Scholar 

  34. Daemen T, Regts J, Holtrop M, Wilschut J (2002) Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene Ther 9:85–94

    Google Scholar 

  35. De Marco F, Hallez S, Brulet JM, Gesche F, Marzano P, Flamini S, Marcante ML, Venuti A (2003) DNA vaccines against HPV-16 E7-expressing tumour cells. Anticancer Res 23:1449–1454

    Google Scholar 

  36. Franconi R, Di Bonito P, Dibello F, Accardi L, Muller A, Cirilli A, Simeone P, Dona MG, Venuti A, Giorgi C (2002) Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res 62:3654–3658

    Google Scholar 

  37. Herd KA, Harvey T, Khromykh AA, Tindle RW (2004) Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour. Virology 319:237–248

    Google Scholar 

  38. Kaufmann AM, Nieland J, Schinz M, Nonn M, Gabelsberger J, Meissner H, Muller RT, Jochmus I, Gissmann L, Schneider A et al (2001) HPV16 L1E7 chimeric virus-like particles induce specific HLA-restricted T cells in humans after in vitro vaccination. Int J Cancer 92:285–293

    Google Scholar 

  39. Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y (2001) Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site. J Virol 75:9654–9664

    Google Scholar 

  40. Li J, Sun Y, Garen A (2002) Immunization and immunotherapy for cancers involving infection by a human papillomavirus in a mouse model Epub 2002 Nov 21. Proc Natl Acad Sci U S A 99:16232–16236

    Google Scholar 

  41. Lin CW, Lee JY, Tsao YP, Shen CP, Lai HC, Chen SL (2002) Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int J Cancer 102:629–637

    Google Scholar 

  42. Nonn M, Schinz M, Zumbach K, Pawlita M, Schneider A, Durst M, Kaufmann AM (2003) Dendritic cell-based tumor vaccine for cervical cancer I: in vitro stimulation with recombinant protein-pulsed dendritic cells induces specific T cells to HPV16 E7 or HPV18 E7 Epub 2003 Aug 2. J Cancer Res Clin Oncol 129:511–520

    Google Scholar 

  43. Osen W, Peiler T, Ohlschlager P, Caldeira S, Faath S, Michel N, Muller M, Tommasino M, Jochmus I, Gissmann L (2001) A DNA vaccine based on a shuffled E7 oncogene of the human papillomavirus type 16 (HPV 16) induces E7-specific cytotoxic T cells but lacks transforming activity. Vaccine 19:4276–4286

    Google Scholar 

  44. Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, Oseroff C, Grey HM, Melief CJ, Kast WM (1995) Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 154:5934–5943

    Google Scholar 

  45. Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT (2000) Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res 60:5456–5463

    Google Scholar 

  46. Wu L, Goodwin EC, Naeger LK, Vigo E, Galaktionov K, Helin K, DiMaio D (2000) E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression. Mol Cell Biol 20:7059–7067

    Google Scholar 

  47. Zhi H, Han L, Ren J, Tian H, Luo W, Liang Y, Ruan L (2002) [Construction of recombinant vaccinia virus co-expressing mutant E6 plus E7 proteins and detection of its immunogenicity and antitumor response]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 16:341–344

    Google Scholar 

  48. Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Durst M, Schneider A, Kaufmann AM (2003) Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol 129:521–530

    Google Scholar 

  49. Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U et al (2002) Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res 8:3676–3685

    Google Scholar 

  50. Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, Kast WM, Fascio G, Marty V, Weber J (2002) A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res 6:3406–3416

    Google Scholar 

  51. Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, Sette A, Trimble EL, Park RC, Marincola FM (1998) Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 4:2103–2109

    Google Scholar 

  52. WJ van Driel, Ressing ME, Kenter GG, Brandt RM, Krul EJ, van Rossum AB, Schuuring E, Offringa R, Bauknecht T, A Tamm-Hermelink, et al (1999) Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer 35:946–952

    Google Scholar 

  53. Hersey P, Menzies SW, Coventry B, Nguyen T, Farrelly M, Collins S, Hirst D, Johnson H (2005) Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol Immunother 54:208–218

    Google Scholar 

  54. Garcia de la Fuente JN, Gutierrez-Martin CB, Ortega N, Rodriguez-Ferri EF, del Rio ML, Gonzalez OR, Salinas J (2004) Efficacy of different commercial and new inactivated vaccines against ovine enzootic abortion. Vet Microbiol 100:65–76

    Google Scholar 

  55. Kumar S, Jones TR, Oakley MS, Zheng H, Kuppusamy SP, Taye A, Krieg AM, Stowers AW, Kaslow DC, Hoffman SL (2004) CpG oligodeoxynucleotide and Montanide ISA 51 adjuvant combination enhanced the protective efficacy of a subunit malaria vaccine. Infect Immun 72:949–957

    Google Scholar 

  56. Slingluff CL Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D et al (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21:4016–4026

    Google Scholar 

  57. Carr A, Rodriguez E, Mdel CA, Camacho R, Osorio M, Gabri M, Carrillo G, Valdes Z, Bebelagua Y, Perez R et al (2003) Immunotherapy of advanced breast cancer with a heterophilic ganglioside (NeuGcGM3) cancer vaccine. J Clin Oncol 21:1015–1021

    Google Scholar 

  58. Gonzalez G, Crombet T, Torres F, Catala M, Alfonso L, Osorio M, Neninger E, Garcia B, Mulet A, Perez R et al (2003) Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy. Ann Oncol 14:461–466

    Google Scholar 

  59. Patil PK, Bayry J, Ramakrishna C, Hugar B, Misra LD, Natarajan C (2002) Immune responses of goats against foot-and-mouth disease quadrivalent vaccine: comparison of double oil emulsion and aluminium hydroxide gel vaccines in eliciting immunity. Vaccine 20:2781–2789

    Google Scholar 

  60. Slingluff CL, Jr., Yamshchikov G, Neese P, Galavotti H, Eastham S, Engelhard VH, Kittlesen D, Deacon D, Hibbitts S, Grosh WW et al (2001) Phase I trial of a melanoma vaccine with gp100(280–288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res 7:3012–3024

    Google Scholar 

  61. Toledo H, Baly A, Castro O, Resik S, Laferte J, Rolo F, Navea L, Lobaina L, Cruz O, Miguez J et al (2001) A phase I clinical trial of a multi-epitope polypeptide TAB9 combined with Montanide ISA 720 adjuvant in non-HIV-1 infected human volunteers. Vaccine 19:4328–4336

    Google Scholar 

  62. Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Teates D, Neese P, Grosh WW, Petroni G, et al (2001) Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer 92:703–711

    Google Scholar 

  63. Pye D, Vandenberg KL, Dyer SL, Irving DO, Goss NH, Woodrow GC, Saul A, Alving CR, Richards RL, Ballou WR, et al (1997) Selection of an adjuvant for vaccination with the malaria antigen, MSA-2. Vaccine 15:1017–1023

    Google Scholar 

  64. Elliott SL, Pye S, Le T, Mateo L, Cox J, Macdonald L, Scalzo AA, Forbes CA, Suhrbier A (1999) Peptide based cytotoxic T-cell vaccines; delivery of multiple epitopes, help, memory and problems. Vaccine 17:2009–2019

    Google Scholar 

  65. Lee RJ, Huang L (1996) Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 271:8481–8487

    Google Scholar 

  66. Li S, Rizzo MA, Bhattacharya S, Huang L (1998) Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther 5:930–937

    Google Scholar 

  67. Whitmore MM, Li S, Falo L Jr, Huang L (2001) Systemic administration of LPD prepared with CpG oligonucleotides inhibits the growth of established pulmonary metastases by stimulating innate and acquired antitumor immune responses. Cancer Immunol Immunother 50:503–514

    Google Scholar 

  68. Whitmore M, Li S, Huang L (1999) LPD lipopolyplex initiates a potent cytokine response and inhibits tumor growth. Gene Ther 6:1867–1875

    Google Scholar 

  69. Dileo J, Banerjee R, Whitmore M, Nayak JV, Falo LD Jr, Huang L (2003) Lipid-protamine-DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Mol Ther 7:640–648

    Google Scholar 

  70. Paschen A, Eichmuller S, Schadendorf D (2004) Identification of tumor antigens and T-cell epitopes, and its clinical application. Cancer Immunol Immunother 53:196–203

    Google Scholar 

  71. Heck DV, Yee CL, Howley PM, Munger K (1992) Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci U S A 89:4442–4446

    Google Scholar 

  72. Sang BC, Barbosa MS (1992) Single amino acid substitutions in “low-risk” human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the “high-risk” HPV E7 oncoproteins. Proc Natl Acad Sci U S A 89:8063–8067

    Google Scholar 

  73. Jewers RJ, Hildebrandt P, Ludlow JW, Kell B, McCance DJ (1992) Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J Virol 66:1329–1335

    Google Scholar 

  74. Shi W, Bu P, Liu J, Polack A, Fisher S, Qiao L (1999) Human papillomavirus type 16 E7 DNA vaccine: mutation in the open reading frame of E7 enhances specific cytotoxic T-lymphocyte induction and antitumor activity. J Virol 73:7877–7881

    Google Scholar 

  75. Kim TY, Myoung HJ, Kim JH, Moon IS, Kim TG, Ahn WS, Sin JI (2002) Both E7 and CpG-oligodeoxynucleotide are required for protective immunity against challenge with human papillomavirus 16 (E6/E7) immortalized tumor cells: involvement of CD4+ and CD8+ T cells in protection. Cancer Res 62:7234–7240

    Google Scholar 

  76. Leone P, Janson CG, Bilaniuk L, Wang Z, Sorgi F, Huang L, Matalon R, Kaul R, Zeng Z, Freese A et al (2000) Aspartoacylase gene transfer to the mammalian central nervous system with therapeutic implications for Canavan disease. Ann Neurol 48:27–38

    Google Scholar 

  77. Kurman RJ, Henson DE, Herbst AL, Noller KL, Schiffman MH (1994) Interim guidelines for management of abnormal cervical cytology The 1992 National Cancer Institute Workshop. Jama 271:1866–1869

    Google Scholar 

  78. Crum CP (2002) The beginning of the end for cervical cancer? N Engl J Med 347:1703–1705

    Google Scholar 

  79. Eiben GL, da Silva DM, Fausch SC, Le Poole IC, Nishimura MI, Kast WM (2003) Cervical cancer vaccines: recent advances in HPV research. Viral Immunol 16:111–121

    Google Scholar 

  80. Hahn S, Gehri R, Erb P (1995) Mechanism and biological significance of CD4-mediated cytotoxicity. Immunol Rev 146:57–79

    Google Scholar 

  81. Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V (2002) Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines 1:111–118

    Google Scholar 

  82. Falo LD Jr, Kovacsovics-Bankowski M, Thompson K, Rock KL (1995) Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat Med 1:649–653

    Google Scholar 

  83. York IA, Rock KL (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol 14:369–396

    Google Scholar 

  84. Blum JS, Ma C, Kovats S (1997) Antigen-presenting cells and the selection of immunodominant epitopes. Crit Rev Immunol 17:411–417

    Google Scholar 

  85. Cui Z, Han S-J, Vangasseri DP, Huang L (2005) Immnuostimulation mechanism of LPD nanoparticles as a vaccine carrier. Mol Pharmaceutics 2:22–28

    Google Scholar 

  86. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S, Wagner H, Lipford GB (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237–9242

    Google Scholar 

  87. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH grants CA74918 and AI48851 to LH. The authors would like to thank Dr. Jeong-Im Sin from the Catholic University of Korea (Seoul, Korea) for the pET-E7 plasmid. ZRC would like to thank Jiang Li and Bin Sun for their help in plasmid molecular manipulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengrong Cui or Leaf Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Z., Huang, L. Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: Therapeutic effect against cervical cancer. Cancer Immunol Immunother 54, 1180–1190 (2005). https://doi.org/10.1007/s00262-005-0685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0685-2

Keywords

Navigation