Skip to main content

Advertisement

Log in

The in vitro antitumor effect and in vivo tumor-specificity distribution of human-mouse chimeric antibody against transferrin receptor

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Transferrin receptor (TfR/CD71) deserves attention as a selective target for cancer therapy due to its higher expression in tumors versus normal tissues. Also, it has been shown the mouse-derived monoclonal antibody against TfR can significantly inhibit the proliferation of tumor cells. Through constructing the chimeric antibody against TfR, the antigenicity of antibody can be weakened, and most importantly, the antitumor effect of antibody can be strengthened by the introduction of the human Fc fragment. In previous studies, we successfully constructed the human-mouse chimeric antibody against TfR (D2C) and demonstrated that its Fab fragment could specially recognize the TfR on the surface of target cells. In this study, through labeling the chimeric antibody D2C with 125I, we calculated the affinity constant (Ka) of 9.34–9.62×109 l/mol for this antibody according to the Scatchard drawing method. Moreover, in vivo studies in nude mice-bearing human liver cancer (SMMC-7721) xenografts have shown that the radioactivity distribution ratio of 131I-D2C on T/NT was 2–14:1 or 3–21:1 on the seventh day after intraperitoneal or intratumoral injection of 131I-labeled D2C (131I-D2C). These evidences indicated that the in vivo distribution of D2C display the characteristics of certain tumor-specificity localization. In vitro studies, D2C can induce the apoptosis of K562 through the mitochondria death pathway and arrest the cell at G1 phase, as determined by cell cycle analysis. Using the human tumor cells (K562, CEM, and SMMC-7721) expressing TfR as target cells, and normal human PBMC as effector cells, Fc fragment of D2C can perform both the antibody-dependent cell-mediated cytotoxicity and the complement-dependent cytotoxicity. Together, it was demonstrated that the D2C display a tumor-specificity distribution, and has a strong antitumor effect. Thus, it has the potential therapeutic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ka:

Affinity constant

CDC:

Complement-dependent cytotoxicity

ADCC:

Antibody-dependent cell-mediated cytotoxicity

NHL:

Non-Hodgkin’s lymphoma

Tf:

Transferrin

TfR:

Transferrin receptor

FACS:

Fluorescence-activated cell sorting

SPECT:

Single photon emission computed tomography

D2C:

Human-mouse chimeric antibody against TfR

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBMC:

Peripheral blood mononuclear cell

References

  1. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Structure of the human transferrin receptor-transferrin complex. Cell 116(4):565–576

    Article  PubMed  CAS  Google Scholar 

  2. Larrick JW, Cresswell P (1979) Modulation of cell surface iron transferrin receptors by cellular density and state of activation. J Supramol Struct 11(4):579–586

    Article  PubMed  CAS  Google Scholar 

  3. Sutherland R, Delia D, Schneider C, Newman R, Kemshead J et al (1981) Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin. Proc Natl Acad Sci USA 78(7):4515–4519

    Article  PubMed  CAS  Google Scholar 

  4. Trowbridge IS, Omary MB (1981) Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc Natl Acad Sci USA 78(5):3039–3043

    Article  PubMed  CAS  Google Scholar 

  5. Lloyd JM, O'Dowd T, Driver M, Tee DE (1984) Demonstration of an epitope of the transferrin receptor in human cervical epithelium—a potentially useful cell marker. J Clin Pathol 37(2):131–135

    Article  PubMed  CAS  Google Scholar 

  6. Raaf HN, Jacobsen DW, Savon S, Green R (1993) Serum transferrin receptor level is not altered in invasive adenocarcinoma of the breast. Am J Clin Pathol 99(3):232–237

    PubMed  CAS  Google Scholar 

  7. Recht LD, Griffin TW, Raso V, Salimi AR (1990) Potent cytotoxicity of an antihuman transferrin receptor-ricin A-chain immunotoxin on human glioma cells in vitro. Cancer Res 50(20):6696–6700

    PubMed  CAS  Google Scholar 

  8. Prost AC, Menegaux F, Langlois P, Vidal JM, Koulibaly M et al (1998) Differential transferrin receptor density in human colorectal cancer: a potential probe for diagnosis and therapy. Int J Oncol 13(4):871–875

    PubMed  CAS  Google Scholar 

  9. Beguin Y, Lampertz S, De Groote D, Igot D, Malaise M et al (1993) Soluble CD23 and other receptors (CD4, CD8, CD25, CD71) in serum of patients with chronic lymphocytic leukemia. Leukemia 7(12):2019–2025

    PubMed  CAS  Google Scholar 

  10. Shindelman JE, Ortmeyer AE, Sussman HH (1981) Demonstration of the transferrin receptor in human breast cancer tissue. Potential marker for identifying dividing cells. Int J Cancer 27(3):329–334

    Article  PubMed  CAS  Google Scholar 

  11. White S, Taetle R, Seligman PA, Rutherford M, Trowbridge IS (1990) Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects. Cancer Res 50(19):6295–6301

    PubMed  CAS  Google Scholar 

  12. Kreitman RJ, Pastan I (1997) Recombinant toxins containing human granulocyte-macrophage colony-stimulating factor and either pseudomonas exotoxin or diphtheria toxin kill gastrointestinal cancer and leukemia cells. Blood 90(1):252–259

    PubMed  CAS  Google Scholar 

  13. Schroff RW, Foon KA, Beatty SM, Oldham RK, Morgan AC Jr (1985) Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 45(2):879–885

    PubMed  CAS  Google Scholar 

  14. Grillo-Lopez AJ, White CA, Varns C, Shen D, Wei A et al (1999) Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol 26(5 Suppl 14):66

    PubMed  CAS  Google Scholar 

  15. Goldenberg MM (1999) A recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21(2):309–318

    Article  PubMed  CAS  Google Scholar 

  16. Rastetter W, Molina A, White CA (2004) Rituximab: expanding role in therapy for lymphomas and autoimmune diseases. Annu Rev Med 55:477–503

    Article  PubMed  CAS  Google Scholar 

  17. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83(2):435–445

    PubMed  CAS  Google Scholar 

  18. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V et al (2003) Complement Activation Determines the Therapeutic Activity of Rituximab In Vivo. J Immunol 171:1581–1587

    PubMed  CAS  Google Scholar 

  19. Wang S, Jiang L, Ye Q, Zhu H, Yang J et al (2003) Construction and expression of an anti-CD71 mouse/human chimeric antibody (D2C). Chin J Immunol 19(10):665–668

    CAS  Google Scholar 

  20. Adams GP, McCartney JE, Tai MS, Oppermann H, Huston JS et al (1993) Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 53(17):4026–4034

    PubMed  CAS  Google Scholar 

  21. Verhoff FH, Lisi PJ, Fischer CD, Teipel JW, Goldstein G et al (1980) Graphical determination of specific activity, binding constants, and antibody-site concentrations for radioimmunoassays, with application to thymopoietin. Clin Chem 26(6):718–723

    PubMed  CAS  Google Scholar 

  22. Ziegler A, Luedke GH, Fabbro D, Altmann KH, Stahel RA et al (1997) Induction of apoptosis in small-cell lung cancer cells by an antisense oligodeoxynucleotide targeting the Bcl-2 coding sequence. J Natl Cancer Inst 89(14):1027–1036

    Article  PubMed  CAS  Google Scholar 

  23. Zangemeister-Wittke U, Schenker T, Luedke GH, Stahel RA (1998) Synergistic cytotoxicity of bcl-2 antisense oligodeoxynucleotides and etoposide, doxorubicin and cisplatin on small cell lung cancer cell lines. Br J Cancer 78(8):1035–1042

    PubMed  CAS  Google Scholar 

  24. Tang YM, Chen MH, Chen GH, Cai CJ, He XS et al (2005) Kinetics of phytohemaglutinin-induced IFN-gamma and TNF-alpha expression in peripheral blood mononuclear cells from patients with chronic hepatitis B after liver transplantation. World J Gastroenterol 11(29):4574–4578

    PubMed  CAS  Google Scholar 

  25. Panduri V, Weitzman SA, Chandel N, Kamp DW (2003) The mitochondria-regulated death pathway mediates asbestos-induced alveolar epithelial cell apoptosis. J Am J Respir Cell Mol Biol 28(2):241–248

    Article  CAS  Google Scholar 

  26. Kovar J, Stunz LL, Stewart BC, Kriegerbeckova K, Ashman RF et al (1997) Direct evidence that iron deprivation induces apoptosis in murine lymphoma 38C13. J Pathobiol 65(2):61–68

    Article  CAS  Google Scholar 

  27. Simonart T, Degraef C, Andrei G, Mosselmans R, Hermans P et al (2000) Iron chelators inhibit the growth and induce the apoptosis of Kaposi's sarcoma cells and of their putative endothelial precursors. J Invest Dermatol 115(5):893–900

    Article  PubMed  CAS  Google Scholar 

  28. Maclean K, Yang H, Cleveland JL (2001) Serum suppresses myeloid progenitor apoptosis by regulating iron homeostasis. Cell Biochem 82(1):171–186

    Article  CAS  Google Scholar 

  29. Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M et al (2004) Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. J Blood 104(6):1793–1800

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Key and Basic Research Development Program (no. 2002CB513109). We thank Prof. Gong Feili for helpful discussions and critical reading of the manuscript and many cited colleagues for the reagents supplied, and Zhang Yue, Yang Jing and Shao Jingfang for assistance with cell culture and maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Guanxin.

Additional information

Ye Qing and Wang Shuo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qing, Y., Shuo, W., Zhihua, W. et al. The in vitro antitumor effect and in vivo tumor-specificity distribution of human-mouse chimeric antibody against transferrin receptor. Cancer Immunol Immunother 55, 1111–1121 (2006). https://doi.org/10.1007/s00262-005-0105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0105-7

Keywords

Navigation