Skip to main content
Log in

Selection for Anti-transferrin Receptor Bispecific T-cell Engager in Different Molecular Formats

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Selecting an ideal molecular format from diverse structures is a major challenge in developing a bispecific antibody (BsAb). To choose an ideal format of anti-CD3 × anti-transferrin receptor (TfR) bispecific antibodies for clinical application, we constructed TfR bispecific T-cell engager (BiTE) in two extensively applied formats, including single-chain tandem single-chain variable fragments (scFvs) and double-chain diabodies, and evaluated their functional characterizations in vitro. Results demonstrated that TfR-BiTE in both formats directed potent killing of TfR+ HepG2 cells. However, compared to two-chain diabodies, scFvs were more efficient in antigen binding and TfR+ target killing. Furthermore, different domain orders in scFvs would also be evaluated because single-TfR-CD3-His was preferable to single-CD3-TfR-His in immunotherapeutic strategies. Thus, the single-chain tandem TfR-CD3 format was favored for further investigation in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayyar BV, Arora S, O’Kennedy R. Coming-of-Age of Antibodies in Cancer Therapeutics. Trends Pharmacol Sci, 2016,37(12):1009–1028

    Article  CAS  Google Scholar 

  2. Seimetz D, Lindhofer H, Bokemeyer C. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev, 2010,36(6):458–467

    Article  CAS  Google Scholar 

  3. Batlevi CL, Matsuki E, Brentjens RJ, et al. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol, 2016,13(1):25–40

    Article  CAS  Google Scholar 

  4. Velasquez MP, Bonifant CL. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood, 2018,131(1):30–38

    Article  CAS  Google Scholar 

  5. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res, 2009,69(12):4941–4944

    Article  CAS  Google Scholar 

  6. Friberg G, Reese D. Blinatumomab (Blincyto): lessons learned from the bispecific t-cell engager (BiTE) in acute lymphocytic leukemia (ALL). Ann Oncol, 2017,28(8):2009–2012

    Article  CAS  Google Scholar 

  7. Wu Z, Cheung NV. T cell engaging bispecific antibody (T-BsAb): From technology to therapeutics. Pharmacol Ther, 2018,182:161–175

    Article  CAS  Google Scholar 

  8. Morrison SL. Two heads are better than one. Nat Biotechnol, 2007,25(11):1233–1234

    Article  CAS  Google Scholar 

  9. Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the “high-hanging fruit”. Nat Rev Drug Discov, 2018,17(3):197–223

    Article  CAS  Google Scholar 

  10. Wolf E, Hofmeister R, Kufer P, et al. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today, 2005,10(18):1237–1244

    Article  CAS  Google Scholar 

  11. Fan G, Wang Z, Hao M, et al. Bispecific antibodies and their applications. J Hematol Oncol, 2015,8:130

    Article  Google Scholar 

  12. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today, 2015,20(7):838–847

    Article  CAS  Google Scholar 

  13. Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy: A review. Pharmacol Ther, 2018,185:122–134

    Article  CAS  Google Scholar 

  14. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA, 1993,90(14):6444–6448

    Article  CAS  Google Scholar 

  15. Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci USA, 1995,92(15):7021–7025

    Article  CAS  Google Scholar 

  16. Garber K. Bispecific antibodies rise again. Nat Rev Drug Discov, 2014,13(11):799–801

    Article  CAS  Google Scholar 

  17. Loffler A, Kufer P, Lutterbuse R, et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood, 2000,95(6):2098–2103

    Article  CAS  Google Scholar 

  18. Frankel SR, Baeuerle PA. Targeting T cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol, 2013,17(3):385–392

    Article  CAS  Google Scholar 

  19. Riethmuller G. Symmetry breaking: bispecific antibodies, the beginnings, and 50 years on. Cancer Immun, 2012,12:12

    PubMed  PubMed Central  Google Scholar 

  20. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs, 2017,9(2):182–212

    Article  CAS  Google Scholar 

  21. Mau-Sorensen M, Dittrich C, Dienstmann R, et al. A phase I trial of intravenous catumaxomab: a bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3. Cancer Chemother Pharmacol, 2015,75(5):1065–1073

    Article  Google Scholar 

  22. Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol, 2015,67(2 Pt A):95–106

    Article  CAS  Google Scholar 

  23. Kipriyanov SM. Generation and characterization of bispecific tandem diabodies for tumor therapy. Methods Mol Biol, 2003,207:323–333

    CAS  PubMed  Google Scholar 

  24. Schmiedl A, Breitling F, Dubel S. Expression of a bispecific dsFv-dsFv’ antibody fragment in Escherichia coli. Protein Eng, 2000,13(10):725–734

    Article  CAS  Google Scholar 

  25. Mabry R, Lewis KE, Moore M, et al. Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng Des Sel, 2010,23(3):115–127

    Article  CAS  Google Scholar 

  26. Huang BC, Foote LJ, Lankford TK, et al. A diabody that dissociates to monomer forms at low concentration: effects on binding activity and tumor targeting. Biochem Biophys Res Commun, 2005,327(4):999–1005

    Article  CAS  Google Scholar 

  27. Compte M, Alvarez-Cienfuegos A, Nunez-Prado N, et al. Functional comparison of single-chain and two-chain anti-CD3-based bispecific antibodies in gene immunotherapy applications. Oncoimmunology, 2014,3(5):e28810

    Article  Google Scholar 

  28. Jost C, Pluckthun A. Engineered proteins with desired specificity: DARPins, other alternative scaffolds and bispecific IgGs. Curr Opin Struct Biol, 2014,27:102–112

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong He or Ping Lei.

Additional information

Conflict of Interest Statement

The authors have declared that no conflict of interest exists.

This research was supported by grants from the National Natural Science Foundation of China (No. 31570937 and No. 81871391), Natural Science Foundation of Hubei Province of China (No. 2017CFB707), the Fundamental Research Funds for the Central Universities of China (No. HUST: 2018KFYYXJJ086) and Graduates’ Innovation Foundation of Huazhong University of Science and Technology (No. 5003510001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Mp., Guo, Zl., Tang, Hl. et al. Selection for Anti-transferrin Receptor Bispecific T-cell Engager in Different Molecular Formats. CURR MED SCI 40, 28–34 (2020). https://doi.org/10.1007/s11596-020-2143-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2143-y

Key words

Navigation