Skip to main content

Advertisement

Log in

Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose: Albuleukin fusion protein is a recombinant human interleukin-2 (rIL-2) genetically fused to recombinant human serum albumin (rHSA). The pharmacokinetics and pharmacologic activity of Albuleukin were examined in mice to determine whether the fusion protein had the immunomodulatory and anti-tumor properties of rIL-2 as well as a prolonged serum half-life due to the rHSA. Methods: The effect of Albuleukin on lymphocyte proliferation, IL-2 receptor binding, and release of IFN-γ from human NK cells were examined in vitro. For the pharmacokinetic analysis, Albuleukin and rIL-2 were administered intravenously (i.v.) and subcutaneously (s.c.) to BALB/c mice, both at a single dose of 500 μg/kg. The anti-tumor properties of Albuleukin were evaluated in a Renca tumor model in BALB/c mice and in a metastatic liver model of B16F10 melanoma in C57B1/6 mice. In the Renca tumor model, BALB/c mice were dosed intraperitoneally (i.p.) and s.c. with Albuleukin on days 12, 14, 16, 19, 21, and 23 and i.p. with rIL-2 daily for two periods of 5 days (days 10–14 and 17–21). In the B16 melanoma model, C57B1/6 mice were dosed s.c. with rIL-2 twice daily or Albuleukin every 48 h for 14 days. Results: In vitro, Albuleukin induced the proliferation of primary human and mouse T cells and B cells and primary human NK cells, competed with rIL-2 for binding to the IL-2 receptors, and induced the production of IFN-γ from primary human NK cells. The s.c. bioavailability of Albuleukin was about 45% relative to the i.v. dose. Plasma half-life was prolonged and ranged from 6 to 8 h with Albuleukin, compared to 19–57 min with rIL-2. Total clearance of Albuleukin was about 50-fold slower than that of rIL-2 after i.v. dosing. In vivo, Albuleukin suppressed the growth of Renca tumors and induced a dense infiltration of CD4+ and CD8+ T cells. Both Albuleukin and rIL-2 significantly reduced the tumor burden in mice with hepatic B16F10 metastases. Albuleukin significantly reduced the incidence of residual macroscopic hepatic tumors, resulting in improved survival relative to controls and rIL-2. Conclusion: Results from these studies suggest that the therapeutic efficacy of rIL-2 is improved in mice by prolonging its in vivo half-life through genetic fusion to albumin. Albuleukin, the fusion protein, had pronounced anti-tumor effects in Renca and hepatic melanoma tumor models without an increase in mortality. On the basis of its preclinical effects, Albuleukin was brought to the clinic to assess its therapeutic benefit in a variety of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Becker JC, Terheyden P, Kampgen E, Wagner S, Neumann C, Schadendorf D, Steinmann A, Wittenberg G, Lieb W, Brocker EB (2002) Treatment of disseminated ocular melanoma with sequential fotemustine, interferon alpha, and interleukin 2. Br J Cancer 87:840

    Article  CAS  PubMed  Google Scholar 

  2. Bent-Hansen L (1991a) Initial plasma disappearance and tissue uptake of 131I-albumin in normal rabbits. Microvasc Res 41:345

    CAS  PubMed  Google Scholar 

  3. Bent-Hansen L (1991b) Whole body capillary exchange of albumin. Acta Physiol Scand Suppl 603:5

    CAS  PubMed  Google Scholar 

  4. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189

    Article  CAS  PubMed  Google Scholar 

  5. Chang AE, Hyatt CL, Rosenberg SA (1984) Systemic administration of recombinant human interleukin-2 in mice. J Biol Response Mod 3:561

    CAS  PubMed  Google Scholar 

  6. Eisenthal A, Cameron RB, Rosenberg SA (1990) Induction of antibody-dependent cellular cytotoxicity in vivo by IFN-alpha and its antitumor efficacy against established B16 melanoma liver metastases when combined with specific anti-B16 monoclonal antibody. J Immunol 144:4463

    CAS  PubMed  Google Scholar 

  7. Eisenthal A, Lafreniere R, Lefor AT, Rosenberg SA (1987) Effect of anti-B16 melanoma monoclonal antibody on established murine B16 melanoma liver metastases. Cancer Res 47:2771

    CAS  PubMed  Google Scholar 

  8. Gaffen SL, Goldsmith MA, Greene WC (1998) Interleukin-2 and the interleukin-2 receptor. The cytokine handbook. Academic, San Diego

  9. Hanes J, Sills A, Zhao Z, Suh KW, Tyler B, DiMeco F, Brat DJ, Choti MA, Leong KW, Pardoll DM, Brem H (2001) Controlled local delivery of interleukin-2 by biodegradable polymers protects animals from experimental brain tumors and liver tumors. Pharm Res 18:899

    CAS  PubMed  Google Scholar 

  10. Kim TS, Xu WS, Sun T, Cohen EP (1995) Immunization with interleukin-2/interferon-gamma double cytokine-secreting allogeneic fibroblasts prolongs the survival of mice with melanoma. Melanoma Res 5:217

    CAS  PubMed  Google Scholar 

  11. Koppenhagen FJ, Kupcu Z, Wallner G, Crommelin DJ, Wagner E, Storm G, Kircheis R (1998) Sustained cytokine delivery for anticancer vaccination: liposomes as alternative for gene-transfected tumor cells. Clin Cancer Res 4:1881

    CAS  PubMed  Google Scholar 

  12. Krup OC, Kroll I, Bose G, Falkenberg FW (1999) Cytokine depot formulations as adjuvants for tumor vaccines. I. Liposome-encapsulated IL-2 as a depot formulation. J Immunother 22:525

    CAS  PubMed  Google Scholar 

  13. Lohr F, Lo DY, Zaharoff DA, Hu K, Zhang X, Li Y, Zhao Y, Dewhirst MW, Yuan F, Li CY (2001) Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res 61:3281

    CAS  PubMed  Google Scholar 

  14. Lotze MT, Matory YL, Ettinghausen SE, Rayner AA, Sharrow SO, Seipp CA, Custer MC, Rosenberg SA (1985) In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J Immunol 135:2865

    CAS  PubMed  Google Scholar 

  15. Milici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603

    CAS  PubMed  Google Scholar 

  16. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260

    CAS  PubMed  Google Scholar 

  17. Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal bone marrows. Science 193:1007

    CAS  PubMed  Google Scholar 

  18. Neville ME, Robb RJ, Popescu MC (2001) In situ vaccination against a non-immunogenic tumour using intratumoural injections of liposomal interleukin 2. Cytokine 16:239

    CAS  PubMed  Google Scholar 

  19. Parker JC, Ryan J, Taylor AE (1984) Plasma-lymph albumin kinetics, total lymph flow, and tissue hematocrit in normally hydrated dog lungs. Microvasc Res 28:254

    CAS  PubMed  Google Scholar 

  20. Perussia B, Ramoni C, Anegon I, Cuturi MC, Faust J, Trinchieri G (1987) Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul 6:171

    CAS  PubMed  Google Scholar 

  21. Peters T Jr (1996) All about albumin; biochemistry, genetics, and medical applications. Academic, San Diego

    Google Scholar 

  22. Piscitelli SC, Bhat N, Pau A (2000) A risk-benefit assessment of interleukin-2 as an adjunct to antiviral therapy in HIV infection. Drug Safety 22:19

    CAS  PubMed  Google Scholar 

  23. Robb RJ, Smith KA (1981) Heterogeneity of human T cell growth factor(s) due to variable glycosylation. Mol Immunol 18:1087

    CAS  PubMed  Google Scholar 

  24. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380

    Article  CAS  PubMed  Google Scholar 

  25. Rubin JT, Elwood LJ, Rosenberg SA, Lotze MT (1989) Immunohistochemical correlates of response to recombinant interleukin-2-based immunotherapy in humans. Cancer Res 49:7086

    CAS  PubMed  Google Scholar 

  26. Rutili G, Arfors KE (1977) Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. Acta Physiol Scand 99:1

    CAS  PubMed  Google Scholar 

  27. Salup RR, Herberman RB, Chirigos MA, Back T, Wiltrout RH (1985) Therapy of peritoneal murine cancer with biological response modifiers. J Immunopharmacol 7:417

    CAS  PubMed  Google Scholar 

  28. Sato T (2002) Locoregional immuno(bio)therapy for liver metastases. Semin Oncol 29:160

    CAS  PubMed  Google Scholar 

  29. Schnitzer JE, Oh P (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269:6072

    CAS  PubMed  Google Scholar 

  30. Schultze HE, Heremans JF (1966) Molecular biology of human proteins, with special reference to plasma proteins. Elsevier, Amsterdam

    Google Scholar 

  31. Smith KA (2000) IL-2. In: Oppenheim JJ, Feldman M (eds) Cytokine reference: a compendium of cytokines and other mediators of host defense. Academic, New York

    Google Scholar 

  32. Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J (1983) Structure and expression of a cloned cDNA for human interleukin-2. Nature 302:305

    CAS  PubMed  Google Scholar 

  33. Wigginton JM, Komschlies KL, Back TC, Franco JL, Brunda MJ, Wiltrout RH (1996) Administration of interleukin 12 with pulse interleukin 2 and the rapid and complete eradication of murine renal carcinoma. J Natl Cancer Inst 88:38

    CAS  PubMed  Google Scholar 

  34. Woll E, Bedikian A, Legha SS (1999) Uveal melanoma: natural history and treatment options for metastatic disease. Melanoma Res 9:575

    CAS  PubMed  Google Scholar 

  35. Yao Z, Dai W, Perry J, Brechbiel MW, Sung C (2004) Effect of albumin fusion on the biodistribution of inter-leukin-2. Cancer Immunol Immunother 53:404

    CAS  PubMed  Google Scholar 

  36. Yeh P, Landais D, Lemaitre M, Maury I, Crenne JY, Becquart J, Murry-Brelier A, Boucher F, Montay G, Fleer R et al. (1992) Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci USA 89:1904

    CAS  PubMed  Google Scholar 

  37. Yuan F (1998) Transvascular drug delivery in solid tumors. Semin Radiat Oncol 8:164

    CAS  PubMed  Google Scholar 

  38. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Saran Bao, Evelyn Good, Jonathan Hirsch, Clint Lincoln, Jiamo Lu, Kathy McCormick, and Renee Micili for their expert technical assistance. The authors also thank Dr. Jessie Wolfe for assistance in writing and editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Gallant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melder, R.J., Osborn, B.L., Riccobene, T. et al. Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice. Cancer Immunol Immunother 54, 535–547 (2005). https://doi.org/10.1007/s00262-004-0624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0624-7

Keywords

Navigation