Skip to main content

Immune System in Action

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1342))

Abstract

Tumor exists as a complex network of structures with an ability to evolve and evade the host immune surveillance mechanism. The immune milieu which includes macrophages, dendritic cells, natural killer cells, neutrophils, mast cells, B cells, and T cells is found in the core, the invasive margin, or the adjacent stromal or lymphoid component of the tumor. The immune infiltrate is heterogeneous and varies within a patient and between patients of the same tumor histology. The location, density, functionality, and the crosstalk between the immune cells in the tumor microenvironment influence the nature of immune response, prognosis, and treatment outcomes in cancer patients. Therefore, an understanding of the characteristics of the immune cells and their role in tumor immune surveillance is of paramount importance to identify immune targets and to develop novel immune therapeutics in the war against cancer. In this chapter, we provide an overview of the individual components of the human immune system and the translational relevance of predictive biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benito-Martin, A., Di Giannatale, A., Ceder, S., & Peinado, H. (2015). The new deal: A potential role for secreted vesicles in innate immunity and tumor progression. Frontiers in Immunology, 6, 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Murphy, K., & Weaver, C. (2016). Janeway’s immunobiology (9th ed.). Garland Science, Taylor & Francis Group, LLC.

    Book  Google Scholar 

  3. Mellman, I. (2013). Dendritic cells: Master regulators of the immune response. Cancer Immunology Research, 1, 145–149.

    Article  CAS  PubMed  Google Scholar 

  4. Turvey, S. E., & Broide, D. H. (2010). Innate immunity. The Journal of Allergy and Clinical Immunology, 125, S24–S32.

    Article  PubMed  Google Scholar 

  5. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.

    Article  CAS  PubMed  Google Scholar 

  6. Janeway, C. A., Jr., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216.

    Article  CAS  PubMed  Google Scholar 

  7. Finn, O. J. (2012). Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Annals of Oncology, 23(Suppl 8), viii6–viii9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 117, 1175–1183.

    Article  CAS  PubMed Central  Google Scholar 

  9. Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, inflammation, and cancer. Cell, 140, 883–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fedeles, B. I., Freudenthal, B. D., Yau, E., Singh, V., Chang, S. C., Li, D. Y., Delaney, J. C., Wilson, S. H., & Essigmann, J. M. (2015). Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. Proceedings of the National Academy of Sciences of the United States of America, 112, E4571–E4E80.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dvorak, H. F., Flier, J., & Frank, H. (1986). Tumors – Wounds that do not heal - similarities between tumor stroma generation and wound-healing. New England Journal of Medicine, 315, 1650–1659.

    Article  CAS  Google Scholar 

  12. Galli, S. J., Borregaard, N., & Wynn, T. A. (2011). Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nature Immunology, 12, 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G. S., & Albelda, S. M. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16, 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayadas, T. N., Cullere, X., & Lowell, C. A. (2014). The multifaceted functions of neutrophils. Annual Review of Pathology, 9, 181–218.

    Article  CAS  PubMed  Google Scholar 

  15. Borregaard, N. (2010). Neutrophils, from marrow to microbes. Immunity, 33, 657–670.

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi, Y. (2006). Neutrophil infiltration and chemokines. Critical Reviews in Immunology, 26, 307–315.

    Article  CAS  PubMed  Google Scholar 

  17. Scapini, P., Carletto, A., Nardelli, B., Calzetti, F., Roschke, V., Merigo, F., Tamassia, N., Pieropan, S., Biasi, D., Sbarbati, A., Sozzani, S., Bambara, L., & Cassatella, M. A. (2005). Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: Implications for inflammatory diseases. Blood, 105, 830–837.

    Article  CAS  PubMed  Google Scholar 

  18. Theilgaard-Monch, K., Knudsen, S., Follin, P., & Borregaard, N. (2004). The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. Journal of Immunology, 172, 7684–7693.

    Article  Google Scholar 

  19. Fridlender, Z. G., & Albelda, S. M. (2012). Tumor-associated neutrophils: Friend or foe? Carcinogenesis, 33, 949–955.

    Article  CAS  PubMed  Google Scholar 

  20. Piccard, H., Muschel, R. J., & Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology Hematology, 82, 296–309.

    Article  CAS  Google Scholar 

  21. Gregory, A. D., & Houghton, A. M. (2011). Tumor-associated neutrophils: New targets for Cancer therapy. Cancer Research, 71, 2411–2416.

    Article  CAS  PubMed  Google Scholar 

  22. Houghton, A. M., Rzymkiewicz, D. M., Ji, H., Gregory, A. D., Egea, E. E., Metz, H. E., Stolz, D. B., Land, S. R., Marconcini, L. A., Kliment, C. R., Jenkins, K. M., Beaulieu, K. A., Mouded, M., Frank, S. J., Wong, K. K., & Shapiro, S. D. (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 16, 219–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: Potential implications for tumor progression. Cancer Research, 65, 8896–8904.

    Article  CAS  PubMed  Google Scholar 

  24. Acharyya, S., Oskarsson, T., Vanharanta, S., Malladi, S., Kim, J., Morris, P. G., Manova-Todorova, K., Leversha, M., Hogg, N., Seshan, V. E., Norton, L., Brogi, E., & Massague, J. (2012). A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell, 150, 165–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shojaei, F., Singh, M., Thompson, J. D., & Ferrara, N. (2008). Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 105, 2640–2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Szczerba, B. M., Castro-Giner, F., Vetter, M., Krol, I., Gkountela, S., Landin, J., Scheidmann, M. C., Donato, C., Scherrer, R., Singer, J., Beisel, C., Kurzeder, C., Heinzelmann-Schwarz, V., Rochlitz, C., Weber, W. P., Beerenwinkel, N., & Aceto, N. (2019). Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature, 566, 553–557.

    Article  CAS  PubMed  Google Scholar 

  27. Liang, W., & Ferrara, N. (2016). The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunology Research, 4, 83–91.

    Article  CAS  PubMed  Google Scholar 

  28. van Gisbergen, K. P. J. M., Geijtenbeek, T. B. H., & van Kooyk, Y. (2005). Close encounters of neutrophils and DCs. Trends in Immunology, 26, 626–631.

    Article  PubMed  CAS  Google Scholar 

  29. Scapini, P., Lapinet-Vera, J. A., Gasperini, S., Calzetti, F., Bazzoni, F., & Cassatella, M. A. (2000). The neutrophil as a cellular source of chemokines. Immunological Reviews, 177, 195–203.

    Article  CAS  PubMed  Google Scholar 

  30. Chaplin, D. D. (2010). Overview of the immune response. The Journal of Allergy and Clinical Immunology, 125, S3–S23.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Reviews, 25, 315–322.

    Article  PubMed  Google Scholar 

  32. Lin, E. Y., Nguyen, A. V., Russell, R. G., & Pollard, J. W. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. The Journal of Experimental Medicine, 193, 727–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Duyndam, M. C., Hilhorst, M. C., Schluper, H. M., Verheul, H. M., van Diest, P. J., Kraal, G., Pinedo, H. M., & Boven, E. (2002). Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. The American Journal of Pathology, 160, 537–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sica, A., Schioppa, T., Mantovani, A., & Allavena, P. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. European Journal of Cancer, 42, 717–727.

    Article  CAS  PubMed  Google Scholar 

  35. Sica, A., Allavena, P., & Mantovani, A. (2008). Cancer related inflammation: The macrophage connection. Cancer Letters, 267, 204–215.

    Article  CAS  PubMed  Google Scholar 

  36. Solinas, G., Germano, G., Mantovani, A., & Allavena, P. (2009). Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology, 86, 1065–1073.

    Article  CAS  PubMed  Google Scholar 

  37. Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4, 71–78.

    Article  CAS  PubMed  Google Scholar 

  38. Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J., & Mantovani, A. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. Journal of Immunology, 164, 762–767.

    Article  CAS  Google Scholar 

  39. Mantovani, A., Allavena, P., & Sica, A. (2004). Tumour-associated macrophages as a prototypic type II polarised phagocyte population: Role in tumour progression. European Journal of Cancer, 40, 1660–1667.

    Article  CAS  PubMed  Google Scholar 

  40. Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., & Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncology Reports, 14, 425–431.

    CAS  PubMed  Google Scholar 

  41. Zhang, J., Yan, Y., Yang, Y., Wang, L., Li, M., Wang, J., Liu, X., Duan, X., & Wang, J. (2016). High infiltration of tumor-associated macrophages influences poor prognosis in human gastric Cancer patients, associates with the phenomenon of EMT. Medicine (Baltimore), 95, e2636.

    Article  CAS  Google Scholar 

  42. Hanada, T., Nakagawa, M., Emoto, A., Nomura, T., Nasu, N., & Nomura, Y. (2000). Prognostic value of tumor-associated macrophage count in human bladder cancer. International Journal of Urology, 7, 263–269.

    Article  CAS  PubMed  Google Scholar 

  43. Salvesen, H. B., & Akslen, L. A. (1999). Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. International Journal of Cancer, 84, 538–543.

    Article  CAS  PubMed  Google Scholar 

  44. Fujimoto, J., Sakaguchi, H., Aoki, I., & Tamaya, T. (2000). Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Research, 60, 2632–2635.

    CAS  PubMed  Google Scholar 

  45. Shimura, S., Yang, G., Ebara, S., Wheeler, T. M., Frolov, A., & Thompson, T. C. (2000). Reduced infiltration of tumor-associated macrophages in human prostate cancer: Association with cancer progression. Cancer Research, 60, 5857–5861.

    CAS  PubMed  Google Scholar 

  46. Forssell, J., Oberg, A., Henriksson, M. L., Stenling, R., Jung, A., & Palmqvist, R. (2007). High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clinical Cancer Research, 13, 1472–1479.

    Article  CAS  PubMed  Google Scholar 

  47. Lee, C., Bae, S. S., Joo, H., & Bae, H. (2017). Melittin suppresses tumor progression by regulating tumor-associated macrophages in a Lewis lung carcinoma mouse model. Oncotarget, 8, 54951–54965.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee, C., Jeong, H., Bae, Y., Shin, K., Kang, S., Kim, H., Oh, J., & Bae, H. (2019). Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. Journal for Immunotherapy of Cancer, 7, 147.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Papadopoulos, K. P., Gluck, L., Martin, L. P., Olszanski, A. J., Tolcher, A. W., Ngarmchamnanrith, G., Rasmussen, E., Amore, B. M., Nagorsen, D., Hill, J. S., & Stephenson, J., Jr. (2017). First-in-human study of AMG 820, a monoclonal anti-Colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors. Clinical Cancer Research, 23, 5703–5710.

    Article  CAS  PubMed  Google Scholar 

  50. Sikic, B. I., Lakhani, N., Patnaik, A., Shah, S. A., Chandana, S. R., Rasco, D., Colevas, A. D., O'Rourke, T., Narayanan, S., Papadopoulos, K., Fisher, G. A., Villalobos, V., Prohaska, S. S., Howard, M., Beeram, M., Chao, M. P., Agoram, B., Chen, J. Y., Huang, J., Axt, M., Liu, J., Volkmer, J. P., Majeti, R., Weissman, I. L., Takimoto, C. H., Supan, D., Wakelee, H. A., Aoki, R., Pegram, M. D., & Padda, S. K. (2019). First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. Journal of Clinical Oncology, 37, 946–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fulkerson, P. C., & Rothenberg, M. E. (2013). Targeting eosinophils in allergy, inflammation and beyond. Nature Reviews. Drug Discovery, 12, 117–129.

    Article  CAS  PubMed  Google Scholar 

  52. Rothenberg, M. E., & Hogan, S. P. (2006). The eosinophil. Annual Review of Immunology, 24, 147–174.

    Article  CAS  PubMed  Google Scholar 

  53. Kita, H. (2011). Eosinophils: Multifaceted biological properties and roles in health and disease. Immunological Reviews, 242, 161–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muniz, V. S., Weller, P. F., & Neves, J. S. (2012). Eosinophil crystalloid granules: Structure, function, and beyond. Journal of Leukocyte Biology, 92, 281–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fernandez-Acenero, M. J., Galindo-Gallego, M., Sanz, J., & Aljama, A. (2000). Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer, 88, 1544–1548.

    Article  CAS  PubMed  Google Scholar 

  56. Dorta, R. G., Landman, G., Kowalski, L. P., Lauris, J. R. P., Latorre, M. R. D. O., & Oliveira, D. T. (2002). Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas. Histopathology, 41, 152–157.

    Article  CAS  PubMed  Google Scholar 

  57. Costello, R., & O'Callaghan, T. (2005). Sebahoun G: [eosinophils and antitumour response]. La Revue de Médecine Interne, 26, 479–484.

    Article  CAS  PubMed  Google Scholar 

  58. Ohkawara, Y., Lim, K. G., Xing, Z., Glibetic, M., Nakano, K., Dolovich, J., Croitoru, K., Weller, P. F., & Jordana, M. (1996). CD40 expression by human peripheral blood eosinophils. The Journal of Clinical Investigation, 97, 1761–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Woerly, G., Roger, N., Loiseau, S., Dombrowicz, D., Capron, A., & Capron, M. (1999). Expression of CD28 and CD86 by human eosinophils and role in the secretion of type 1 cytokines (interleukin 2 and interferon gamma): Inhibition by immunoglobulin a complexes. The Journal of Experimental Medicine, 190, 487–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi, H. Z., Humbles, A., Gerard, C., Jin, Z., & Weller, P. F. (2000). Lymph node trafficking and antigen presentation by endobronchial eosinophils. Journal of Clinical Investigation, 105, 945–953.

    Article  CAS  PubMed Central  Google Scholar 

  61. Lotfi, R., Herzog, G. I., DeMarco, R. A., Beer-Stolz, D., Lee, J. J., Rubartelli, A., Schrezenmeier, H., & Lotze, M. T. (2009). Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. Journal of Immunology, 183, 5023–5031.

    Article  CAS  Google Scholar 

  62. Cormier, S. A., Taranova, A. G., Bedient, C., Nguyen, T., Protheroe, C., Pero, R., Dimina, D., Ochkur, S. I., O'Neill, K., Colbert, D., Lombari, T. R., Constant, S., McGarry, M. P., Lee, J. J., & Lee, N. A. (2006). Pivotal advance: Eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. Journal of Leukocyte Biology, 79, 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  63. Minton, K. (2015). Granulocytes: Eosinophils enable the antitumour T cell response. Nature Reviews. Immunology, 15, 333.

    Article  CAS  PubMed  Google Scholar 

  64. Carretero, R., Sektioglu, I. M., Garbi, N., Salgado, O. C., Beckhove, P., & Hammerling, G. J. (2015). Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nature Immunology, 16, 609–617.

    Article  CAS  PubMed  Google Scholar 

  65. Munitz, A., & Hogan, S. P. (2019). Alarming eosinophils to combat tumors. Nature Immunology, 20, 250–252.

    Article  CAS  PubMed  Google Scholar 

  66. Hollande, C., Boussier, J., Ziai, J., Nozawa, T., Bondet, V., Phung, W., Lu, B., Duffy, D., Paradis, V., Mallet, V., Eberl, G., Sandoval, W., Schartner, J. M., & Pol, S. (2019). Barreira da Silva R, Albert ML: Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nature Immunology, 20, 257–264.

    Article  CAS  PubMed  Google Scholar 

  67. Wei, Y. S., Zhang, X., Wang, G. Y., Zhou, Y. G., Luo, M. R., Wang, S., & Hong, C. Y. (2018). The impacts of pretreatment circulating eosinophils and basophils on prognosis of stage ?-? Colorectal cancer. Asia-Pacific Journal of Clinical Oncology, 14, e243–ee51.

    Article  PubMed  Google Scholar 

  68. Falcone, F. H., Zillikens, D., & Gibbs, B. F. (2006). The 21st century renaissance of the basophil? Current insights into its role in allergic responses and innate immunity. Experimental Dermatology, 15, 855–864.

    Article  CAS  PubMed  Google Scholar 

  69. Schroeder, J. T., MacGlashan, D. W., Jr., & Lichtenstein, L. M. (2001). Human basophils: Mediator release and cytokine production. Advances in Immunology, 77, 93–122.

    Article  CAS  PubMed  Google Scholar 

  70. Haas, H., Falcone, F. H., Holland, M. J., Schramm, G., Haisch, K., Gibbs, B. F., Bufe, A., & Schlaak, M. (1999). Early interleukin-4: Its role in the switch towards a Th2 response and IgE-mediated allergy. International Archives of Allergy and Immunology, 119, 86–94.

    Article  CAS  PubMed  Google Scholar 

  71. Schroeder, J. T. (2009). Basophils beyond effector cells of allergic inflammation. Advances in Immunology, 101, 123–161.

    Article  CAS  PubMed  Google Scholar 

  72. Prevete, N., Staiano, R. I., Granata, F., Detoraki, A., Necchi, V., Ricci, V., Triggiani, M., De Paulis, A., Marone, G., & Genovese, A. (2013). Expression and function of angiopoietins and their tie receptors in human basophils and mast cells. Journal of Biological Regulators Homeostatic Agents, 27, 827–839.

    CAS  PubMed  Google Scholar 

  73. De Monte, L., Wormann, S., Brunetto, E., Heltai, S., Magliacane, G., Reni, M., Paganoni, A. M., Recalde, H., Mondino, A., Falconi, M., Aleotti, F., Balzano, G., Ul, H. A., Doglioni, C., & Protti, M. P. (2016). Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic Cancer patients. Cancer Research, 76, 1792–1803.

    Article  PubMed  CAS  Google Scholar 

  74. Frossi, B., De Carli, M., & Pucillo, C. (2004). The mast cell: An antenna of the microenvironment that directs the immune response. Journal of Leukocyte Biology, 75, 579–585.

    Article  CAS  PubMed  Google Scholar 

  75. Qi, X., Hong, J., Chaves, L., Zhuang, Y., Chen, Y., Wang, D., Chabon, J., Graham, B., Ohmori, K., Li, Y., & Huang, H. (2013). Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. Immunity, 39, 97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marone, G., Galli, S. J., & Kitamura, Y. (2002). Probing the roles of mast cells and basophils in natural and acquired immunity, physiology and disease. Trends in Immunology, 23, 425–427.

    Article  PubMed  Google Scholar 

  77. Galli, S. J., & Franco, C. B. (2008). Basophils are back! Immunity, 28, 495–497.

    Article  CAS  PubMed  Google Scholar 

  78. Stone, K. D., Prussin, C., & Metcalfe, D. D. (2010). IgE, mast cells, basophils, and eosinophils. The Journal of Allergy and Clinical Immunology, 125, S73–S80.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Metcalfe, D. D. (2008). Mast cells and mastocytosis. Blood, 112, 946–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nonomura, N., Takayama, H., Nishimura, K., Oka, D., Nakai, Y., Shiba, M., Tsujimura, A., Nakayama, M., Aozasa, K., & Okuyama, A. (2007). Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. British Journal of Cancer, 97, 952–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rojas, I. G., Spencer, M. L., Martinez, A., Maurelia, M. A., & Rudolph, M. I. (2005). Characterization of mast cell subpopulations in lip cancer. Journal of Oral Pathology & Medicine, 34, 268–273.

    Article  CAS  Google Scholar 

  82. Fukushima, H., Ohsawa, M., Ikura, Y., Naruko, T., Sugama, Y., Suekane, T., Kitabayashi, C., Inoue, T., Hino, M., & Ueda, M. (2006). Mast cells in diffuse large B-cell lymphoma; their role in fibrosis. Histopathology, 49, 498–505.

    Article  CAS  PubMed  Google Scholar 

  83. Kormelink, T. G., Abudukelimu, A., & Redegeld, F. A. (2009). Mast cells as target in Cancer therapy. Current Pharmaceutical Design, 15, 1868–1878.

    Article  Google Scholar 

  84. Ribatti, D., Vacca, A., Nico, B., Crivellato, E., Roncali, L., & Dammacco, F. (2001). The role of mast cells in tumour angiogenesis. British Journal of Haematology, 115, 514–521.

    Article  CAS  PubMed  Google Scholar 

  85. Rajput, A. B., Turbin, D. A., Cheang, M. C., Voduc, D. K., Leung, S., Gelmon, K. A., Gilks, C. B., & Huntsman, D. G. (2008). Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: A study of 4,444 cases. Breast Cancer Research and Treatment, 107, 249–257.

    Article  PubMed  Google Scholar 

  86. Chan, J. K., Magistris, A., Loizzi, V., Lin, F., Rutgers, J., Osann, K., DiSaia, P. J., & Samoszuk, M. (2005). Mast cell density, angiogenesis, blood clotting, and prognosis in women with advanced ovarian cancer. Gynecologic Oncology, 99, 20–25.

    Article  CAS  PubMed  Google Scholar 

  87. Welsh, T. J., Green, R. H., Richardson, D., Waller, D. A., O'Byrne, K. J., & Bradding, P. (2005). Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. Journal of Clinical Oncology, 23, 8959–8967.

    Article  PubMed  Google Scholar 

  88. Tan, S. Y., Fan, Y., Luo, H. S., Shen, Z. X., Guo, Y., & Zhao, L. J. (2005). Prognostic significance of cell infiltrations of immunosurveillance in colorectal cancer. World Journal of Gastroenterology, 11, 1210–1214.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Latti, S., Leskinen, M., Shiota, N., Wang, Y. F., Kovanen, P. T., & Lindstedt, K. A. (2003). Mast cell-mediated apoptosis of endothelial cells in vitro: A paracrine mechanism involving TNF-alpha-mediated down-regulation of bcl-2 expression. Journal of Cellular Physiology, 195, 130–138.

    Article  CAS  PubMed  Google Scholar 

  90. Leskinen, M. J., Lindstedt, K. A., Wang, Y. F., & Kovanen, P. T. (2003). Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arteriosclerosis Thrombosis Vascular Biology, 23, 238–243.

    Article  CAS  Google Scholar 

  91. Hammer, G. E., & Ma, A. (2013). Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annual Review of Immunology, 31, 743–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, K., & Nussenzweig, M. C. (2010). Origin and development of dendritic cells. Immunological Reviews, 234, 45–54.

    Article  CAS  PubMed  Google Scholar 

  93. Liu, K., Victora, G. D., Schwickert, T. A., Guermonprez, P., Meredith, M. M., Yao, K., Chu, F. F., Randolph, G. J., Rudensky, A. Y., & Nussenzweig, M. (2009). In vivo analysis of dendritic cell development and homeostasis. Science, 324, 392–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shortman, K., & Naik, S. H. (2007). Steady-state and inflammatory dendritic-cell development. Nature Reviews. Immunology, 7, 19–30.

    Article  CAS  PubMed  Google Scholar 

  95. Trombetta, E. S., & Mellman, I. (2005). Cell biology of antigen processing in vitro and in vivo. Annual Review of Immunology, 23, 975–1028.

    Article  CAS  PubMed  Google Scholar 

  96. Steinman, R. M. (2012). Decisions about dendritic cells: Past, present, and future. Annual Review of Immunology, 30, 1–22.

    Article  CAS  PubMed  Google Scholar 

  97. Wculek, S. K., Cueto, F. J., Mujal, A. M., Melero, I., Krummel, M. F., & Sancho, D. (2019). Dendritic cells in cancer immunology and immunotherapy. Nature Reviews. Immunology.

    Google Scholar 

  98. Spranger, S., Bao, R., & Gajewski, T. F. (2015). Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature, 523, 231–235.

    Article  CAS  PubMed  Google Scholar 

  99. Bottcher, J. P., Bonavita, E., Chakravarty, P., Blees, H., Cabeza-Cabrerizo, M., Sammicheli, S., Rogers, N. C., Sahai, E., Zelenay, S., & Sousa, C. R. E. (2018). NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting Cancer immune control. Cell, 172, 1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ljunggren, H. G., & Karre, K. (1990). In search of the missing self - Mhc molecules and Nk cell recognition. Immunology Today, 11, 237–244.

    Article  CAS  PubMed  Google Scholar 

  101. Vivier, E., Nunes, J. A., & Vely, F. (2004). Natural killer cell signaling pathways. Science, 306, 1517–1519.

    Article  CAS  PubMed  Google Scholar 

  102. Tomasello, E., Blery, M., Vely, F., & Vivier, E. (2000). Signaling pathways engaged by NK cell receptors: Double concerto for activating receptors, inhibitory receptors and NK cells. Seminars in Immunology, 12, 139–147.

    Article  CAS  PubMed  Google Scholar 

  103. Strengell, M., Matikainen, S., Siren, J., Lehtonen, A., Foster, D., Julkunen, I., & Sareneva, T. (2003). IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. Journal of Immunology, 170, 5464–5469.

    Article  CAS  Google Scholar 

  104. Brady, J., Carotta, S., Thong, R. P., Chan, C. J., Hayakawa, Y., Smyth, M. J., & Nutt, S. L. (2010). The interactions of multiple cytokines control NK cell maturation. Journal of Immunology, 185, 6679–6688.

    Article  CAS  Google Scholar 

  105. Lunemann, A., Lunemann, J. D., & Munz, C. (2009). Regulatory NK-cell functions in inflammation and autoimmunity. Molecular Medicine, 15, 352–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Becknell, B., & Caligiuri, M. A. (2008). Natural killer cells in innate immunity and cancer. Journal of Immunotherapy, 31, 685–692.

    Article  PubMed  Google Scholar 

  107. Kaiser, B. K., Yim, D., Chow, I. T., Gonzalez, S., Dai, Z., Mann, H. H., Strong, R. K., Groh, V., & Spies, T. (2007). Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature, 447, 482–486.

    Article  CAS  PubMed  Google Scholar 

  108. Groh, V., Wu, J., Yee, C., & Spies, T. (2002). Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 419, 734–738.

    Article  CAS  PubMed  Google Scholar 

  109. Castriconi, R., Cantoni, C., Della Chiesa, M., Vitale, M., Marcenaro, E., Conte, R., Biassoni, R., Bottino, C., Moretta, L., & Moretta, A. (2003). Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 4120–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sconocchia, G., Titus, J. A., & Segal, D. M. (1997). Signaling pathways regulating CD44-dependent cytolysis in natural killer cells. Blood, 90, 716–725.

    Article  CAS  PubMed  Google Scholar 

  111. Wang, W., Erbe, A. K., Hank, J. A., Morris, Z. S., & Sondel, P. M. (2015). NK cell-mediated antibody-dependent cellular cytotoxicity in Cancer immunotherapy. Frontiers in Immunology, 6, 368.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ferlazzo, G., Thomas, D., Lin, S. L., Goodman, K., Morandi, B., Muller, W. A., Moretta, A., & Munz, C. (2004). The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. Journal of Immunology, 172, 1455–1462.

    Article  CAS  Google Scholar 

  113. Sun, J. C., Beilke, J. N., & Lanier, L. L. (2009). Adaptive immune features of natural killer cells. Nature, 457, 557–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Albertsson, P. A., Basse, P. H., Hokland, M., Goldfarb, R. H., Nagelkerke, J. F., Nannmark, U., & Kuppen, P. J. (2003). NK cells and the tumour microenvironment: Implications for NK-cell function and anti-tumour activity. Trends in Immunology, 24, 603–609.

    Article  CAS  PubMed  Google Scholar 

  115. Mensali, N., Dillard, P., Hebeisen, M., Lorenz, S., Theodossiou, T., Myhre, M. R., Fane, A., Gaudernack, G., Kvalheim, G., Myklebust, J. H., Inderberg, E. M., & Walchli, S. (2019). NK cells specifically TCR-dressed to kill cancer cells. eBioMedicine, 40, 106–117.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liu, E. L., Marin, D., Banerjee, P., Macapinlac, H. A., Thompson, P., Basar, R., Kerbauy, L. N., Overman, B., Thall, P., Kaplan, M., Nandivada, V., Kaur, I., Cortes, A. N., Cao, K., Daher, M., Hosing, C., Cohen, E. N., Kebriaei, P., Mehta, R., Neelapu, S., Nieto, Y., Wang, M., Wierda, W., Keating, M., Champlin, R., Shpall, E. J., & Rezvani, K. (2020). Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. New England Journal of Medicine, 382, 545–553.

    Article  CAS  Google Scholar 

  117. Robey, E., & Fowlkes, B. J. (1994). Selective events in T cell development. Annual Review of Immunology, 12, 675–705.

    Article  CAS  PubMed  Google Scholar 

  118. Germain, R. N. (2002). T-cell development and the CD4-CD8 lineage decision. Nature Reviews. Immunology, 2, 309–322.

    Article  CAS  PubMed  Google Scholar 

  119. Scollay, R., Wilson, A., D'Amico, A., Kelly, K., Egerton, M., Pearse, M., Wu, L., & Shortman, K. (1988). Developmental status and reconstitution potential of subpopulations of murine thymocytes. Immunological Reviews, 104, 81–120.

    Article  CAS  PubMed  Google Scholar 

  120. Blackburn, C. C., & Manley, N. R. (2004). Developing a new paradigm for thymus organogenesis. Nature Reviews. Immunology, 4, 278–289.

    Article  CAS  PubMed  Google Scholar 

  121. Vonboehmer, H., Teh, H. S., & Kisielow, P. (1989). The Thymus selects the useful, neglects the useless and destroys the harmful. Immunology Today, 10, 57–61.

    Article  CAS  Google Scholar 

  122. Leung, R. K., Thomson, K., Gallimore, A., Jones, E., Van den Broek, M., Sierro, S., Alsheikhly, A. R., McMichael, A., & Rahemtulla, A. (2001). Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nature Immunology, 2, 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  123. Sharma, P., Wagner, K., Wolchok, J. D., & Allison, J. P. (2011). Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nature Reviews. Cancer, 11, 805–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lugo-Villarino, G., Maldonado-Lopez, R., Possemato, R., Penaranda, C., & Glimcher, L. H. (2003). T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 7749–7754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu, J. F., Guo, L. Y., Watson, C. J., Hu-Li, J., & Paul, W. E. (2001). Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. Journal of Immunology, 166, 7276–7281.

    Article  CAS  Google Scholar 

  126. Zhou, L., Lopes, J. E., & Chong, M. M. (2008). Ivanov, II, min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453, 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, W. J., Jin, W. W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G., & Wahl, S. M. (2003). Conversion of peripheral CD4(+)CD25(−) naive T cells to CD4(+)CD25(+) regulatory T cells by TGF-beta induction of transcription factor Foxp3. The Journal of Experimental Medicine, 198, 1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nurieva, R. I., Chung, Y., Hwang, D., Yang, X. O., Kang, H. S., Ma, L., Wang, Y. H., Watowich, S. S., Jetten, A. M., Tian, Q., & Dong, C. (2008). Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity, 29, 138–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Staudt, V., Bothur, E., Klein, M., Lingnau, K., Reuter, S., Grebe, N., Gerlitzki, B., Hoffmann, M., Ulges, A., Taube, C., Dehzad, N., Becker, M., Stassen, M., Steinborn, A., Lohoff, M., Schild, H., Schmitt, E., & Bopp, T. (2010). Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity, 33, 192–202.

    Article  CAS  PubMed  Google Scholar 

  130. Saule, P., Trauet, J., Dutriez, V., Lekeux, W., Dessaint, J. P., & Labalette, M. (2006). Accumulation of memory T cells from childhood to old age: Central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mechanisms of Ageing and Development, 127, 274–281.

    Article  CAS  PubMed  Google Scholar 

  131. Kabelitz, D., Serrano, R., Kouakanou, L., Peters, C., & Kalyan, S. (2020). Cancer immunotherapy with gammadelta T cells: Many paths ahead of us. Cellular & Molecular Immunology, 17, 925–939.

    Article  CAS  Google Scholar 

  132. Chen, L., & Flies, D. B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Reviews. Immunology, 13, 227–242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Linsley, P. S., Clark, E. A., & Ledbetter, J. A. (1990). T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proceedings of the National Academy of Sciences of the United States of America, 87, 5031–5035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hutloff, A., Dittrich, A. M., Beier, K. C., Eljaschewitsch, B., Kraft, R., Anagnostopoulos, I., & Kroczek, R. A. (1999). ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature, 397, 263–266.

    Article  CAS  PubMed  Google Scholar 

  135. Nam, K. O., Kang, H., Shin, S. M., Cho, K. H., Kwon, B., Kwon, B. S., Kim, S. J., & Lee, H. W. (2005). Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. Journal of Immunology, 174, 1898–1905.

    Article  CAS  Google Scholar 

  136. Godfrey, W. R., Fagnoni, F. F., Harara, M. A., Buck, D., & Engleman, E. G. (1994). Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. The Journal of Experimental Medicine, 180, 757–762.

    Article  CAS  PubMed  Google Scholar 

  137. Vonderheide, R. H. (2007). Prospect of targeting the CD40 pathway for cancer therapy. Clinical Cancer Research, 13, 1083–1088.

    Article  CAS  PubMed  Google Scholar 

  138. Nocentini, G., & Riccardi, C. (2009). GITR: A modulator of immune response and inflammation. Advances in Experimental Medicine and Biology, 647, 156–173.

    Article  CAS  PubMed  Google Scholar 

  139. Marin-Acevedo, J. A., Dholaria, B., Soyano, A. E., Knutson, K. L., Chumsri, S., & Lou, Y. (2018). Next generation of immune checkpoint therapy in cancer: New developments and challenges. Journal of Hematology & Oncology, 11, 39.

    Article  CAS  Google Scholar 

  140. Ruby, C. E., Yates, M. A., Hirschhorn-Cymerman, D., Chlebeck, P., Wolchok, J. D., Houghton, A. N., Offner, H., & Weinberg, A. D. (2009). Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. Journal of Immunology, 183, 4853–4857.

    Article  CAS  Google Scholar 

  141. Vonderheide, R. H., & Glennie, M. J. (2013). Agonistic CD40 antibodies and cancer therapy. Clinical Cancer Research, 19, 1035–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L. S., Damle, N. K., & Ledbetter, J. A. (1991). CTLA-4 is a second receptor for the B cell activation antigen B7. The Journal of Experimental Medicine, 174, 561–569.

    Article  CAS  PubMed  Google Scholar 

  143. Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L. J., Malenkovich, N., Okazaki, T., Byrne, M. C., Horton, H. F., Fouser, L., Carter, L., Ling, V., Bowman, M. R., Carreno, B. M., Collins, M., Wood, C. R., & Honjo, T. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of Experimental Medicine, 192, 1027–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 pathways similarities, differences, and implications of their inhibition. American Journal of Clinical Oncology-Cancer Clinical Trials, 39, 98–106.

    CAS  Google Scholar 

  145. Liang, S. C., Latchman, Y. E., Buhlmann, J. E., Tomczak, M. F., Horwitz, B. H., Freeman, G. J., & Sharpe, A. H. (2003). Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. European Journal of Immunology, 33, 2706–2716.

    Article  CAS  PubMed  Google Scholar 

  146. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T., & Honjo, T. (2001). PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proceedings of the National Academy of Sciences of the United States of America, 98, 13866–13871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Anderson, A. C., Joller, N., & Kuchroo, V. K. (2016). Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity, 44, 989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Joller, N., Lozano, E., Burkett, P. R., Patel, B., Xiao, S., Zhu, C., Xia, J., Tan, T. G., Sefik, E., Yajnik, V., Sharpe, A. H., Quintana, F. J., Mathis, D., Benoist, C., Hafler, D. A., & Kuchroo, V. K. (2014). Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity, 40, 569–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jordan, M. S., Boesteanu, A., Reed, A. J., Petrone, A. L., Holenbeck, A. E., Lerman, M. A., Naji, A., & Caton, A. J. (2001). Thymic selection of CD4(+)CD25(+) regulatory T cells induced by an agonist self-peptide. Nature Immunology, 2, 301–306.

    Article  CAS  PubMed  Google Scholar 

  150. Croft, M. (2009). The role of TNF superfamily members in T-cell function and diseases. Nature Reviews. Immunology, 9, 271–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12, 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Nagasawa, T. (2006). Microenvironmental niches in the bone marrow required for B-cell development. Nature Reviews. Immunology, 6, 107–116.

    Article  CAS  PubMed  Google Scholar 

  153. Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D., & Hayakawa, K. (1991). Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. The Journal of Experimental Medicine, 173, 1213–1225.

    Article  CAS  PubMed  Google Scholar 

  154. Tiegs, S. L., Russell, D. M., & Nemazee, D. (1993). Receptor editing in self-reactive bone marrow B cells. The Journal of Experimental Medicine, 177, 1009–1020.

    Article  CAS  PubMed  Google Scholar 

  155. Carsetti, R., Kohler, G., & Lamers, M. C. (1995). Transitional B cells are the target of negative selection in the B cell compartment. The Journal of Experimental Medicine, 181, 2129–2140.

    Article  CAS  PubMed  Google Scholar 

  156. Pieper, K., Grimbacher, B., & Eibel, H. (2013). B-cell biology and development. The Journal of Allergy and Clinical Immunology, 131, 959–971.

    Article  CAS  PubMed  Google Scholar 

  157. Shlomchik, M. J., & Weisel, F. (2012). Germinal center selection and the development of memory B and plasma cells. Immunological Reviews, 247, 52–63.

    Article  PubMed  Google Scholar 

  158. Schroeder, H. W., Jr., & Cavacini, L. (2010). Structure and function of immunoglobulins. The Journal of Allergy and Clinical Immunology, 125, S41–S52.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lipman, N. S., Jackson, L. R., Trudel, L. J., & Weis-Garcia, F. (2005). Monoclonal versus polyclonal antibodies: Distinguishing characteristics, applications, and information resources. ILAR Journal, 46, 258–268.

    Article  CAS  PubMed  Google Scholar 

  160. Kung, P., Goldstein, G., Reinherz, E. L., & Schlossman, S. F. (1979). Monoclonal antibodies defining distinctive human T cell surface antigens. Science, 206, 347–349.

    Article  CAS  PubMed  Google Scholar 

  161. Morrison, S. L., Johnson, M. J., Herzenberg, L. A., & Oi, V. T. (1984). Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains. Proceedings of the National Academy of Sciences of the United States of America, 81, 6851–6855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Riechmann, L., Clark, M., Waldmann, H., & Winter, G. (1988). Reshaping human antibodies for therapy. Nature, 332, 323–327.

    Article  CAS  PubMed  Google Scholar 

  163. Harding, F. A., Stickler, M. M., Razo, J., & DuBridge, R. B. (2010). The immunogenicity of humanized and fully human antibodies: Residual immunogenicity resides in the CDR regions. MAbs, 2, 256–265.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Scott, A. M., Wolchok, J. D., & Old, L. J. (2012). Antibody therapy of cancer. Nature Reviews. Cancer, 12, 278–287.

    Article  CAS  PubMed  Google Scholar 

  165. Wennhold, K., Shimabukuro-Vornhagen, A., & von Bergwelt-Baildon, M. (2019). B cell-based cancer immunotherapy. Transfusion Medicine and Hemotherapy, 46, 36–46.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Elgueta, R., Benson, M. J., de Vries, V. C., Wasiuk, A., Guo, Y. X., & Noelle, R. J. (2009). Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunological Reviews, 229, 152–172.

    Article  CAS  PubMed  Google Scholar 

  167. Fridman, W. H., Pages, F., Sautes-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: Impact on clinical outcome. Nature Reviews. Cancer, 12, 298–306.

    Article  CAS  PubMed  Google Scholar 

  168. Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annual Review of Immunology, 22, 329–360.

    Article  CAS  PubMed  Google Scholar 

  169. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: From immunosurveillance to tumor escape. Nature Immunology, 3, 991–998.

    Article  CAS  PubMed  Google Scholar 

  170. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  171. Teng, M. W., Galon, J., Fridman, W. H., & Smyth, M. J. (2015). From mice to humans: Developments in cancer immunoediting. The Journal of Clinical Investigation, 125, 3338–3346.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Mellman, I., Coukos, G., & Dranoff, G. (2011). Cancer immunotherapy comes of age. Nature, 480, 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews. Immunology, 12, 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Huang, B., Pan, P. Y., Li, Q. S., Sato, A. I., Levy, D. E., Bromberg, J., Divino, C. M., & Chen, S. H. (2006). Gr-1(+)CD115(+) immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66, 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  175. Lindau, D., Gielen, P., Kroesen, M., Wesseling, P., & Adema, G. J. (2013). The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology, 138, 105–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Waldmann, T. A. (2018). Cytokines in Cancer immunotherapy. Cold Spring Harbor Perspectives in Biology, 10.

    Google Scholar 

  177. Bentebibel, S. E., Hurwitz, M. E., Bernatchez, C., Haymaker, C., Hudgens, C. W., Kluger, H. M., Tetzlaff, M. T., Tagliaferri, M. A., Zalevsky, J., Hoch, U., Fanton, C., Aung, S., Hwu, P., Curti, B. D., Tannir, N. M., Sznol, M., & Diab, A. (2019). A first-in-human study and biomarker analysis of NKTR-214, a novel 1L2R beta gamma-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discovery, 9, 711–721.

    Article  CAS  PubMed  Google Scholar 

  178. Diab, A., Tykodi, S., Curti, B., Cho, D., Wong, M., Puzanov, I., Lewis, K., Maio, M., Daniels, G., Spira, A., Tagliaferri, M., Hannah, A., Clemens, W., Imperiale, M., Bernatchez, C., Haymaker, C., Bentebibel, S., Zalevsky, J., Hoch, U., Fanton, C., Rizwan, A., Aung, S., Cattaruzza, F., Iaccucci, E., Sawka, D., Bilen, M., Lorigan, P. C., Grignani, G., Larkin, J., Jang, S., Warzocha, E., Sznol, M., & Hurwitz, M. (2018). 33rd annual meeting & pre-conference programs of the Society for Immunotherapy of Cancer (SITC 2018). Journal for Immunotherapy of Cancer, 6, 115.

    Article  Google Scholar 

  179. Mumm, J. B., Emmerich, J., Zhang, X., Chan, I., Wu, L., Mauze, S., Blaisdell, S., Basham, B., Dai, J., Grein, J., Sheppard, C., Hong, K., Cutler, C., Turner, S., LaFace, D., Kleinschek, M., Judo, M., Ayanoglu, G., Langowski, J., Gu, D., Paporello, B., Murphy, E., Sriram, V., Naravula, S., Desai, B., Medicherla, S., Seghezzi, W., McClanahan, T., Cannon-Carlson, S., Beebe, A. M., & Oft, M. (2011). IL-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer Cell, 20, 781–796.

    Article  CAS  PubMed  Google Scholar 

  180. Naing, A., Papadopoulos, K. P., Autio, K. A., Ott, P. A., Patel, M. R., Wong, D. J., Falchook, G. S., Pant, S., Whiteside, M., Rasco, D. R., Mumm, J. B., Chan, I. H., Bendell, J. C., Bauer, T. M., Colen, R. R., Hong, D. S., Van Vlasselaer, P., Tannir, N. M., Oft, M., & Infante, J. R. (2016). Safety, antitumor activity, and immune activation of Pegylated recombinant human Interleukin-10 (AM0010) in patients with advanced solid tumors. Journal of Clinical Oncology, 34, 3562–3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wong, D., Schneider, J. G., Aljumaily, R., Korn, W. M., Infante, J., Patel, M., Autio, K., Papadopoulos, K., Naing, A., Gabrail, N. Y., Munster, P., Goldman, J., Ratti, N., Van Vlasselaer, P., Hung, A., Oft, M., & Garon, E. (2017). 9PDPEGylated human IL-10 (AM0010) in combination with an anti-PD-1 in advanced NSCLC. Annals of Oncology, 28.

    Google Scholar 

  182. Hecht, J. R., Naing, A., Falchook, G. S., Patel, M. R., Infante, J. R., Aljumaily, R., Wong, D. J. L., Autio, K. A., Wainberg, Z. A., Javle, M. M., Bendell, J. C., Pant, S., Hung, A., Vlasselaer, P. V., Oft, M., & Papadopoulos, K. P. (2018). Overall survival of PEGylated human IL-10 (AM0010) with 5-FU/LV and oxaliplatin (FOLFOX) in metastatic pancreatic adenocarcinoma (PDAC). Journal of Clinical Oncology, 36, 374.

    Article  Google Scholar 

  183. Naing, A., Infante, J. R., Papadopoulos, K. P., Chan, I. H., Shen, C., Ratti, N. P., Rojo, B., Autio, K. A., Wong, D. J., Patel, M. R., Ott, P. A., Falchook, G. S., Pant, S., Hung, A., Pekarek, K. L., Wu, V., Adamow, M., McCauley, S., Mumm, J. B., Wong, P., Van Vlasselaer, P., Leveque, J., Tannir, N. M., & Oft, M. (2018). PEGylated IL-10 (Pegilodecakin) induces systemic immune activation, CD8(+) T cell invigoration and polyclonal T cell expansion in Cancer patients. Cancer Cell, 34, 775–791. e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kumari, N., Dwarakanath, B. S., Das, A., & Bhatt, A. N. (2016). Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biology, 37, 11553–11572.

    Article  CAS  PubMed  Google Scholar 

  185. Johnson, D. E., O'Keefe, R. A., & Grandis, J. R. (2018). Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature Reviews. Clinical Oncology, 15, 234–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14, 6735–6741.

    Article  CAS  PubMed  Google Scholar 

  187. Schalper, K. A., Carleton, M., Zhou, M., Chen, T., Feng, Y., Huang, S. P., Walsh, A. M., Baxi, V., Pandya, D., Baradet, T., Locke, D., Wu, Q. Y., Reilly, T. P., Phillips, P., Nagineni, V., Gianino, N., Gu, J. L., Zhao, H. Y., Perez-Gracia, J. L., Sanmamed, M. F., & Melero, I. (2020). Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nature Medicine, 26, 688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bilusic, M., Heery, C. R., Collins, J. M., Donahue, R. N., Palena, C., Madan, R. A., Karzai, F., Marte, J. L., Strauss, J., Gatti-Mays, M. E., Schlom, J., & Gulley, J. L. (2019). Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. Journal for Immunotherapy of Cancer, 7, 240.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Nguyen, K. G., Vrabel, M. R., Mantooth, S. M., Hopkins, J. J., Wagner, E. S., Gabaldon, T. A., & Zaharoff, D. A. (2020). Localized Interleukin-12 for Cancer immunotherapy. Frontiers in Immunology, 11, 575597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Hurteau, J. A., Blessing, J. A., DeCesare, S. L., & Creasman, W. T. (2001). Evaluation of recombinant human interleukin-12 in patients with recurrent or refractory ovarian cancer: A gynecologic oncology group study. Gynecologic Oncology, 82, 7–10.

    Article  CAS  PubMed  Google Scholar 

  191. Motzer, R. J., Rakhit, A., Thompson, J. A., Nemunaitis, J., Murphy, B. A., Ellerhorst, J., Schwartz, L. H., Berg, W. J., & Bukowski, R. M. (2001). Randomized multicenter phase II trial of subcutaneous recombinant human interleukin-12 versus interferon-alpha 2a for patients with advanced renal cell carcinoma. Journal of Interferon & Cytokine Research, 21, 257–263.

    Article  CAS  Google Scholar 

  192. Strauss, J., Heery, C. R., Kim, J. W., Jochems, C., Donahue, R. N., Montgomery, A. S., McMahon, S., Lamping, E., Marte, J. L., Madan, R. A., Bilusic, M., Silver, M. R., Bertotti, E., Schlom, J., & Gulley, J. L. (2019). First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clinical Cancer Research, 25, 99–109.

    Article  CAS  PubMed  Google Scholar 

  193. Greaney, S. K., Algazi, A. P., Tsai, K. K., Takamura, K. T., Chen, L., Twitty, C. G., Zhang, L., Paciorek, A., Pierce, R. H., Le, M. H., Daud, A. I., & Fong, L. (2020). Intratumoral plasmid IL12 electroporation therapy in patients with advanced melanoma induces systemic and Intratumoral T-cell responses. Cancer Immunology Research, 8, 246–254.

    Article  CAS  PubMed  Google Scholar 

  194. Algazi, A., Bhatia, S., Agarwala, S., Molina, M., Lewis, K., Faries, M., Fong, L., Levine, L. P., Franco, M., Oglesby, A., Ballesteros-Merino, C., Bifulco, C. B., Fox, B. A., Bannavong, D., Talia, R., Browning, E., Le, M. H., Pierce, R. H., Gargosky, S., Tsai, K. K., Twitty, C., & Daud, A. I. (2020). Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Annals of Oncology, 31, 532–540.

    Article  CAS  PubMed  Google Scholar 

  195. Algazi, A. P., Twitty, C. G., Tsai, K. K., Le, M., Pierce, R., Browning, E., Hermiz, R., Canton, D. A., Bannavong, D., Oglesby, A., Francisco, M., Fong, L., Pittet, M. J., Arlauckas, S. P., Garris, C., Levine, L. P., Bifulco, C., Ballesteros-Merino, C., Bhatia, S., Gargosky, S., Andtbacka, R. H. I., Fox, B. A., Rosenblum, M. D., & Daud, A. I. (2020). Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clinical Cancer Research, 26, 2827–2837.

    Article  CAS  PubMed  Google Scholar 

  196. Fabbi, M., Carbotti, G., & Ferrini, S. (2017). Dual roles of IL-27 in Cancer biology and immunotherapy. Mediators of Inflammation, 2017, 3958069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Murugaiyan, G., & Saha, B. (2013). IL-27 in tumor immunity and immunotherapy. Trends in Molecular Medicine, 19, 108–116.

    Article  CAS  PubMed  Google Scholar 

  198. Zhu, J., Liu, J. Q., Shi, M., Cheng, X., Ding, M., Zhang, J. C., Davis, J. P., Varikuti, S., Satoskar, A. R., Lu, L., Pan, X., Zheng, P., Liu, Y., & Bai, X. F. (2018). IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy. JCI Insight, 3.

    Google Scholar 

  199. Waldmann, T. A., Miljkovic, M. D., & Conlon, K. C. (2020). Interleukin-15 (dys)regulation of lymphoid homeostasis: Implications for therapy of autoimmunity and cancer. The Journal of Experimental Medicine, 217.

    Google Scholar 

  200. Conlon, K. C., Lugli, E., Welles, H. C., Rosenberg, S. A., Fojo, A. T., Morris, J. C., Fleisher, T. A., Dubois, S. P., Perera, L. P., Stewart, D. M., Goldman, C. K., Bryant, B. R., Decker, J. M., Chen, J., Worthy, T. A., Figg, W. D., Sr., Peer, C. J., Sneller, M. C., Lane, H. C., Yovandich, J. L., Creekmore, S. P., Roederer, M., & Waldmann, T. A. (2015). Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. Journal of Clinical Oncology, 33, 74–82.

    Article  CAS  PubMed  Google Scholar 

  201. Conlon, K. C., Potter, E. L., Pittaluga, S., Lee, C. R., Miljkovic, M. D., Fleisher, T. A., Dubois, S., Bryant, B. R., Petrus, M., Perera, L. P., Hsu, J., Figg, W. D., Peer, C. J., Shih, J. H., Yovandich, J. L., Creekmore, S. P., Roederer, M., & Waldmann, T. A. (2019). IL15 by continuous intravenous infusion to adult patients with solid tumors in a phase I trial induced dramatic NK-cell subset expansion. Clinical Cancer Research, 25, 4945–4954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Waldmann, T. A., Dubois, S., Miljkovic, M. D., & Conlon, K. C. (2020). IL-15 in the combination immunotherapy of Cancer. Frontiers in Immunology, 11, 868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tarhini, A. A., Millward, M., Mainwaring, P., Kefford, R., Logan, T., Pavlick, A., Kathman, S. J., Laubscher, K. H., Dar, M. M., & Kirkwood, J. M. (2009). A phase 2, randomized study of SB-485232, rhIL-18, in patients with previously untreated metastatic melanoma. Cancer, 115, 859–868.

    Article  CAS  PubMed  Google Scholar 

  204. Zhou, T., Damsky, W., Weizman, O. E., McGeary, M. K., Hartmann, K. P., Rosen, C. E., Fischer, S., Jackson, R., Flavell, R. A., Wang, J., Sanmamed, M. F., Bosenberg, M. W., & Ring, A. M. (2020). IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature, 583, 609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Khan, Z., Hammer, C., Guardino, E., Chandler, G. S., & Albert, M. L. (2019). Mechanisms of immune-related adverse events associated with immune checkpoint blockade: Using germline genetics to develop a personalized approach. Genome Medicine, 11.

    Google Scholar 

  206. Johnson, D., Patel, A. B., Uemura, M. I., Trinh, V., Jackson, N., Zobniw, C. M., Tetzlaff, M. T., Hwu, P., Curry, J. L., & Diab, A. (2019). IL17A blockade successfully treated Psoriasiform dermatologic toxicity from immunotherapy. Cancer Immunology Research, 7, 860–865.

    Article  CAS  PubMed  Google Scholar 

  207. Abu-Sbeih, H., Ali, F. S., Wang, X. M., Mallepally, N., Chen, E., Altan, M., Bresalier, R. S., Charabaty, A., Dadu, R., Jazaeri, A., Lashner, B., & Wang, Y. H. (2019). Early introduction of selective immunosuppressive therapy associated with favorable clinical outcomes in patients with immune checkpoint inhibitor-induced colitis. Journal for Immunotherapy of Cancer, 7.

    Google Scholar 

  208. Tangri, S., LiCalsi, C., Sidney, J., & Sette, A. (2002). Rationally engineered proteins or antibodies with absent or reduced immunogenicity. Current Medicinal Chemistry, 9, 2191–2199.

    Article  CAS  PubMed  Google Scholar 

  209. Weiner, L. M., Surana, R., & Wang, S. Z. (2010). Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nature Reviews. Immunology, 10, 317–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Krummel, M. F., & Allison, J. P. (1995). Cd28 and Ctla-4 have opposing effects on the response of T-cells to stimulation. Journal of Experimental Medicine, 182, 459–465.

    Article  CAS  Google Scholar 

  211. Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J. C., Akerley, W., van den Eertwegh, A. J. M., Lutzky, J., Lorigan, P., Vaubel, J. M., Linette, G. P., Hogg, D., Ottensmeier, C. H., Lebbe, C., Peschel, C., Quirt, I., Clark, J. I., Wolchok, J. D., Weber, J. S., Tian, J., Yellin, M. J., Nichol, G. M., Hoos, A., & Urba, W. J. (2010). Improved survival with Ipilimumab in patients with metastatic melanoma. New England Journal of Medicine, 363, 711–723.

    Article  CAS  Google Scholar 

  212. Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D., Picus, J., Sharfman, W. H., Stankevich, E., Pons, A., Salay, T. M., McMiller, T. L., Gilson, M. M., Wang, C., Selby, M., Taube, J. M., Anders, R., Chen, L., Korman, A. J., Pardoll, D. M., Lowy, I., & Topalian, S. L. (2010). Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology, 28, 3167–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., Chow, L. Q., Vokes, E. E., Felip, E., Holgado, E., Barlesi, F., Kohlhaufl, M., Arrieta, O., Burgio, M. A., Fayette, J., Lena, H., Poddubskaya, E., Gerber, D. E., Gettinger, S. N., Rudin, C. M., Rizvi, N., Crino, L., Blumenschein, G. R., Jr., Antonia, S. J., Dorange, C., Harbison, C. T., Graf Finckenstein, F., & Brahmer, J. R. (2015). Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung Cancer. The New England Journal of Medicine, 373, 1627–1639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Brahmer, J., Reckamp, K. L., Baas, P., Crino, L., Eberhardt, W. E., Poddubskaya, E., Antonia, S., Pluzanski, A., Vokes, E. E., Holgado, E., Waterhouse, D., Ready, N., Gainor, J., Aren Frontera, O., Havel, L., Steins, M., Garassino, M. C., Aerts, J. G., Domine, M., Paz-Ares, L., Reck, M., Baudelet, C., Harbison, C. T., Lestini, B., & Spigel, D. R. (2015). Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung Cancer. The New England Journal of Medicine, 373, 123–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Herbst, R. S., Baas, P., Kim, D. W., Felip, E., Perez-Gracia, J. L., Han, J. Y., Molina, J., Kim, J. H., Arvis, C. D., Ahn, M. J., Majem, M., Fidler, M. J., de Castro, G., Jr., Garrido, M., Lubiniecki, G. M., Shentu, Y., Im, E., Dolled-Filhart, M., & Garon, E. B. (2015). Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet.

    Google Scholar 

  216. Rosenberg, J. E., Hoffman-Censits, J., Powles, T., van der Heijden, M. S., Balar, A. V., Necchi, A., Dawson, N., O’Donnell, P. H., Balmanoukian, A., Loriot, Y., Srinivas, S., Retz, M. M., Grivas, P., Joseph, R. W., Galsky, M. D., Fleming, M. T., Petrylak, D. P., Perez-Gracia, J. L., Burris, H. A., … Dreicer, R. (2016). Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet, 387, 1909–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. U.S. Food and Drug Administration. (2018). Hematology/Oncology (Cancer) approvals & safety notifications.

    Google Scholar 

  218. Aspeslagh, S., Postel-Vinay, S., Rusakiewicz, S., Soria, J. C., Zitvogel, L., & Marabelle, A. (2016). Rationale for anti-OX40 cancer immunotherapy. European Journal of Cancer, 52, 50–66.

    Article  CAS  PubMed  Google Scholar 

  219. Topalian, S. L., Weiner, G. J., & Pardoll, D. M. (2011). Cancer immunotherapy comes of age. Journal of Clinical Oncology, 29, 4828–4836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Wargo, J. A., Cooper, Z. A., & Flaherty, K. T. (2014). Universes collide: Combining immunotherapy with targeted therapy for cancer. Cancer Discovery, 4, 1377–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sullivan, R. J., Gonzalez, R., Lewis, K. D., Hamid, O., Infante, J. R., Patel, M. R., Hodi, F. S., Wallin, J., Pitcher, B., Cha, E., Roberts, L., Ballinger, M., & Hwu, P. (2017). Atezolizumab (a) + cobimetinib (C) + vemurafenib (V) in BRAFV600-mutant metastatic melanoma (mel): Updated safety and clinical activity. Journal of Clinical Oncology, 35, 3063.

    Article  Google Scholar 

  222. Formenti, S. C., & Demaria, S. (2013). Combining radiotherapy and cancer immunotherapy: A paradigm shift. Journal of the National Cancer Institute, 105, 256–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Golden, E. B., Chachoua, A., Fenton-Kerimian, M. B., Demaria, S., & Formenti, S. C. (2015). Abscopal responses in metastatic non-small cell lung Cancer (NSCLC) patients treated on a phase 2 study of combined radiation therapy and Ipilimumab: Evidence for the in situ vaccination hypothesis of radiation. International Journal of Radiation Oncology Biology Physics, 93, S66–SS7.

    Article  Google Scholar 

  224. Fiorica, F., Belluomini, L., Stefanelli, A., Santini, A., Urbini, B., Giorgi, C., & Frassoldati, A. (2018). Immune checkpoint inhibitor Nivolumab and radiotherapy in pretreated lung Cancer patients: Efficacy and safety of combination. American Journal of Clinical Oncology.

    Google Scholar 

  225. Moon, Y. W., Hajjar, J., Hwu, P., & Naing, A. (2015). Targeting the indoleamine 2,3-dioxygenase pathway in cancer. Journal for Immunotherapy of Cancer, 3, 51.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Koblish, H. K., Hansbury, M. J., Bowman, K. J., Yang, G., Neilan, C. L., Haley, P. J., Burn, T. C., Waeltz, P., Sparks, R. B., Yue, E. W., Combs, A. P., Scherle, P. A., Vaddi, K., & Fridman, J. S. (2010). [INCB preclin] Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Molecular Cancer Therapeutics, 9, 489–498.

    Article  CAS  PubMed  Google Scholar 

  227. Liu, X., Shin, N., Koblish, H. K., Yang, G., Wang, Q., Wang, K., Leffet, L., Hansbury, M. J., Thomas, B., Rupar, M., Waeltz, P., Bowman, K. J., Polam, P., Sparks, R. B., Yue, E. W., Li, Y., Wynn, R., Fridman, J. S., Burn, T. C., Combs, A. P., Newton, R. C., & Scherle, P. A. (2010). [INCB preclin] selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood, 115, 3520–3530.

    Article  CAS  PubMed  Google Scholar 

  228. Metz, R., Rust, S., Duhadaway, J. B., Mautino, M. R., Munn, D. H., Vahanian, N. N., Link, C. J., & Prendergast, G. C. (2012). [Indoximod preclin] IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology, 1, 1460–1468.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Iversen, T. Z., Engell-Noerregaard, L., Ellebaek, E., Andersen, R., Larsen, S. K., Bjoern, J., Zeyher, C., Gouttefangeas, C., Thomsen, B. M., Holm, B., Straten, P. T., Mellemgaard, A., Andersen, M. H., & Svane, I. M. (2013). [IDO pep vac] Long-lasting disease stabilization in the absence of toxicity in metastatic lung Cancer patients vaccinated with an epitope derived from Indoleamine 2,3 dioxygenase. Clinical Cancer Research.

    Google Scholar 

  230. Siu, L. L., Gelmon, K., Chu, Q., Pachynski, R., Alese, O., Basciano, P., Walker, J., Mitra, P., Zhu, L., Phillips, P., Hunt, J., & Desai, J. (2017). Abstract CT116: BMS-986205, an optimized indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor, is well tolerated with potent pharmacodynamic (PD) activity, alone and in combination with nivolumab (nivo) in advanced cancers in a phase 1/2a trial. Cancer Research, 77, CT116-CT.

    Article  Google Scholar 

  231. Mautino, M. R., Jaipuri, F. A., Waldo, J., Kumar, S., Adams, J., Allen, C. V., Marcinowicz-Flick, A., Munn, D., Vahanian, N., & Link, C. J. J. (2013). NLG919, a novel indoleamine-2,3-dioxygenase (IDO)-pathway inhibitor drug candidate for cancer therapy. In AACR, p. 491.

    Google Scholar 

  232. Long, G. V., Dummer, R., Hamid, O., Gajewski, T. F., Caglevic, C., Dalle, S., Arance, A., Carlino, M. S., Grob, J. J., Kim, T. M., Demidov, L., Robert, C., Larkin, J., Anderson, J. R., Maleski, J., Jones, M., Diede, S. J., & Mitchell, T. C. (2019). Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. The Lancet Oncology, 20, 1083–1097.

    Article  CAS  PubMed  Google Scholar 

  233. Choi, Y., Shi, Y., Haymaker, C. L., Naing, A., Ciliberto, G., & Hajjar, J. (2020). T-cell agonists in cancer immunotherapy. Journal for Immunotherapy of Cancer, 8.

    Google Scholar 

  234. Segal, N. H., Logan, T. F., Hodi, F. S., McDermott, D., Melero, I., Hamid, O., Schmidt, H., Robert, C., Chiarion-Sileni, V., Ascierto, P. A., Maio, M., Urba, W. J., Gangadhar, T. C., Suryawanshi, S., Neely, J., Jure-Kunkel, M., Krishnan, S., Kohrt, H., Sznol, M., & Levy, R. (2017). Results from an integrated safety analysis of Urelumab, an agonist anti-CD137 monoclonal antibody. Clinical Cancer Research, 23, 1929–1936.

    Article  CAS  PubMed  Google Scholar 

  235. Tolcher, A. W., Sznol, M., Hu-Lieskovan, S., Papadopoulos, K. P., Patnaik, A., Rasco, D. W., Di Gravio, D., Huang, B., Gambhire, D., Chen, Y., Thall, A. D., Pathan, N., Schmidt, E. V., & Chow, L. Q. M. (2017). Phase Ib study of Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with Pembrolizumab (MK-3475) in patients with advanced solid tumors. Clinical Cancer Research, 23, 5349–5357.

    Article  CAS  PubMed  Google Scholar 

  236. Zheng, L., Judkins, C., Hoare, J., Klein, R., Parkinson, R., Wang, H., Cao, H., Durham, J., Purtell. K., Jesus-Acosta, A., Le, D., Narang, A., Anders, R., Burkhart, R., Burns, W., Wolfgang, C., Thompson, E., Laheru, D., He, J., & Jaffee, E. (2020). Urelumab (anti-CD137 agonist) in combination with vaccine and nivolumab treatments is safe and associated with pathologic response as neoadjuvant and adjuvant therapy for resectable pancreatic cancer [abstract 812]. Society for Immunotherapy of Cancer 35th Anniversary Annual Meeting & Preconference Programs (SITC 2020).

    Google Scholar 

  237. Messenheimer, D. J., Jensen, S. M., Afentoulis, M. E., Wegmann, K. W., Feng, Z. P., Friedman, D. J., Gough, M. J., Urba, W. J., & Fox, B. A. (2017). Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clinical Cancer Research, 23, 6165–6177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Young, K. H., Baird, J. R., Savage, T., Cottam, B., Friedman, D., Bambina, S., Messenheimer, D. J., Fox, B., Newell, P., Bahjat, K. S., Gough, M. J., & Crittenden, M. R. (2016). Optimizing timing of immunotherapy improves control of tumors by Hypofractionated radiation therapy. PLoS One, 11, e0157164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Cai, Z., Sanchez, A., Shi, Z., Zhang, T., Liu, M., & Zhang, D. (2011). Activation of toll-like receptor 5 on breast cancer cells by flagellin suppresses cell proliferation and tumor growth. Cancer Research, 71, 2466–2475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wolska, A., Lech-Maranda, E., & Robak, T. (2009). Toll-like receptors and their role in carcinogenesis and anti-tumor treatment. Cellular & Molecular Biology Letters, 14, 248–272.

    Article  CAS  Google Scholar 

  241. Liu, Y., Yan, W., Tohme, S., Chen, M., Fu, Y., Tian, D., Lotze, M., Tang, D. L., & Tsung, A. (2015). Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through toll-like receptor 9. Journal of Hepatology, 63, 114–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Shi, M., Chen, X., Ye, K., Yao, Y., & Li, Y. (2016). Application potential of toll-like receptors in cancer immunotherapy: Systematic review. Medicine, 95.

    Google Scholar 

  243. Li, K., Qu, S., Chen, X., Wu, Q., & Shi, M. (2017). Promising targets for Cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. International Journal of Molecular Sciences, 18.

    Google Scholar 

  244. Ishikawa, H., Ma, Z., & Barber, G. N. (2009). STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 461, 788–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Fuertes, M. B., Kacha, A. K., Kline, J., Woo, S. R., Kranz, D. M., Murphy, K. M., & Gajewski, T. F. (2011). Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. The Journal of Experimental Medicine, 208, 2005–2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Corrales, L., Glickman, L. H., McWhirter, S. M., Kanne, D. B., Sivick, K. E., Katibah, G. E., Woo, S. R., Lemmens, E., Banda, T., Leong, J. J., Metchette, K., Dubensky, T. W., Jr., & Gajewski, T. F. (2015). Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Reports, 11, 1018–1030.

    Article  CAS  PubMed  Google Scholar 

  247. Fu, J., Kanne, D. B., Leong, M., Glickman, L. H., McWhirter, S. M., Lemmens, E., Mechette, K., Leong, J. J., Lauer, P., Liu, W., Sivick, K. E., Zeng, Q., Soares, K. C., Zheng, L., Portnoy, D. A., Woodward, J. J., Pardoll, D. M., Dubensky, T. W., & Kim, Y. (2015). STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Science Translational Medicine, 7.

    Google Scholar 

  248. Deng, L. F., Liang, H., Xu, M., Yang, X. M., Burnette, B., Arina, A., Li, X. D., Mauceri, H., Beckett, M., Darga, T., Huang, X. N., Gajewski, T. F., Chen, Z. J. J., Fu, Y. X., & Weichselbaum, R. R. (2014). STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 41, 843–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nature Immunology, 11, 889–896.

    Article  CAS  PubMed  Google Scholar 

  250. Ries, C. H., Cannarile, M. A., Hoves, S., Benz, J., Wartha, K., Runza, V., Rey-Giraud, F., Pradel, L. P., Feuerhake, F., Klaman, I., Jones, T., Jucknischke, U., Scheiblich, S., Kaluza, K., Gorr, I. H., Walz, A., Abiraj, K., Cassier, P. A., Sica, A., Gomez-Roca, C., de Visser, K. E., Italiano, A., Le Tourneau, C., Delord, J. P., Levitsky, H., Blay, J. Y., & Ruttinger, D. (2014). Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for Cancer therapy. Cancer Cell, 25, 846–859.

    Article  CAS  PubMed  Google Scholar 

  251. Song, M. L., Liu, T., Shi, C. R., Zhang, X. Z., & Chen, X. Y. (2016). Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano, 10, 633–647.

    Article  CAS  PubMed  Google Scholar 

  252. Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J. S., Nejadnik, H., Goodman, S., Moseley, M., Coussens, L. M., & Daldrup-Link, H. E. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11, 986–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Wiehagen, K. R., Girgis, N. M., Yamada, D. H., Smith, A. A., Chan, S. R., Grewal, I. S., Quigley, M., & Verona, R. I. (2017). Combination of CD40 Agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunology Research, 5, 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  254. Hibbs, J. B., Taintor, R. R., & Vavrin, Z. (1987). Macrophage cytotoxicity - role for L-arginine deiminase and Imino-nitrogen oxidation to nitrite. Science, 235, 473–476.

    Article  CAS  PubMed  Google Scholar 

  255. Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E. M., Antonia, S., Ochoa, J. B., & Ochoa, A. C. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64, 5839–5849.

    Article  CAS  PubMed  Google Scholar 

  256. Munder, M. (2009). Arginase: An emerging key player in the mammalian immune system. British Journal of Pharmacology, 158, 638–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Topalian, S. L., Taube, J. M., Anders, R. A., & Pardoll, D. M. (2016). Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nature Reviews. Cancer, 16, 275–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Doroshow, D. B., Bhalla, S., Beasley, M. B., Sholl, L. M., Kerr, K. M., Gnjatic, S., Wistuba, I. I., Rimm, D. L., Tsao, M. S., & Hirsch, F. R. (2021). PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nature Reviews Clinical Oncology.

    Google Scholar 

  259. U.S. Food and Drug Administration. (2015) FDA approves Keytruda for advanced non-small cell lung cancer. Edited by http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm465444.htm.

  260. Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., Sosman, J. A., McDermott, D. F., Powderly, J. D., Gettinger, S. N., Kohrt, H. E., Horn, L., Lawrence, D. P., Rost, S., Leabman, M., Xiao, Y., Mokatrin, A., Koeppen, H., Hegde, P. S., Mellman, I., Chen, D. S., & Hodi, F. S. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515, 563–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., von Pawel, J., Gadgeel, S. M., Hida, T., Kowalski, D. M., Dols, M. C., Cortinovis, D. L., Leach, J., Polikoff, J., Barrios, C., Kabbinavar, F., Frontera, O. A., De Marinis, F., Turna, H., Lee, J. S., Ballinger, M., Kowanetz, M., He, P., Chen, D. S., Sandler, A., Gandara, D. R., & Grp, O. S. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet, 389, 255–265.

    Article  PubMed  Google Scholar 

  262. Madore, J., Vilain, R. E., Menzies, A. M., Kakavand, H., Wilmott, J. S., Hyman, J., Yearley, J. H., Kefford, R. F., Thompson, J. F., Long, G. V., Hersey, P., & Scolyer, R. A. (2015). PD-L1 expression in melanoma shows marked heterogeneity within and between patients: Implications for anti-PD-1/PD-L1 clinical trials. Pigment Cell & Melanoma Research, 28.

    Google Scholar 

  263. Rosell, R., & Palmero, R. (2015). PD-L1 expression associated with better response to EGFR tyrosine kinase inhibitors. Cancer Biology & Medicine, 12, 71–73.

    Google Scholar 

  264. Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348, 56–61.

    Article  CAS  PubMed  Google Scholar 

  265. Hadrup, S., Donia, M., & Thor Straten, P. (2013). Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenvironment, 6, 123–133.

    Article  CAS  PubMed  Google Scholar 

  266. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., Rubin, S. C., & Coukos, G. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. The New England Journal of Medicine, 348, 203–213.

    Article  CAS  PubMed  Google Scholar 

  267. Ruffini, E., Asioli, S., Filosso, P. L., Lyberis, P., Bruna, M. C., Macri, L., Daniele, L., & Oliaro, A. (2009). Clinical significance of tumor-infiltrating lymphocytes in lung neoplasms. The Annals of Thoracic Surgery, 87, 365–371. discussion 71–2.

    Article  PubMed  Google Scholar 

  268. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J. R., Zhang, L., Burow, M., Zhu, Y., Wei, S., Kryczek, I., Daniel, B., Gordon, A., Myers, L., Lackner, A., Disis, M. L., Knutson, K. L., Chen, L., & Zou, W. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10, 942–949.

    Article  CAS  PubMed  Google Scholar 

  269. Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., Biota, C., Doffin, A. C., Durand, I., Olive, D., Perez, S., Pasqual, N., Faure, C., Coquard, I. R., Puisieux, A., Caux, C., Blay, J. Y., & Menetrier-Caux, C. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and Lead to an adverse clinical outcome. Cancer Research, 69, 2000–2009.

    Article  CAS  PubMed  Google Scholar 

  270. Fu, J. L., Xu, D. P., Liu, Z. W., Shi, M., Zhao, P., Fu, B. Y., Zhang, Z., Yang, H. Y., Zhang, H., Zhou, C. B., Ya, J. X., Jin, L., Wang, H. F., Yang, Y. P., Fu, Y. X., & Wang, F. S. (2007). Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology, 132, 2328–2339.

    Article  PubMed  Google Scholar 

  271. Llosa, N. J., Cruise, M., Tam, A., Wicks, E. C., Hechenbleikner, E. M., Taube, J. M., Blosser, R. L., Fan, H. N., Wang, H., Luber, B. S., Zhang, M., Papadopoulos, N., Kinzler, K. W., Vogelstein, B., Sears, C. L., Anders, R. A., Pardoll, D. M., & Housseau, F. (2015). The vigorous immune microenvironment of microsatellite instable Colon Cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discovery, 5, 43–51.

    Article  CAS  PubMed  Google Scholar 

  272. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoue, F., Bruneval, P., Cugnenc, P. H., Trajanoski, Z., Fridman, W. H., & Pages, F. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 313, 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  273. Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J., Robert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., West, A. N., Carmona, M., Kivork, C., Seja, E., Cherry, G., Gutierrez, A. J., Grogan, T. R., Mateus, C., Tomasic, G., Glaspy, J. A., Emerson, R. O., Robins, H., Pierce, R. H., Elashoff, D. A., Robert, C., & Ribas, A. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515, 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Hamid, O., Schmidt, H., Nissan, A., Ridolfi, L., Aamdal, S., Hansson, J., Guida, M., Hyams, D. M., Gomez, H., Bastholt, L., Chasalow, S. D., & Berman, D. (2011). A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. Journal of Translational Medicine, 9.

    Google Scholar 

  275. Martens, A., Wistuba-Hamprecht, K., Yuan, J., Postow, M. A., Wong, P., Capone, M., Madonna, G., Khammari, A., Schilling, B., Sucker, A., Schadendorf, D., Martus, P., Dreno, B., Ascierto, P. A., Wolchok, J. D., Pawelec, G., Garbe, C., & Weide, B. (2016). Increases in absolute lymphocytes and circulating CD4+ and CD8+ T cells are associated with positive clinical outcome of melanoma patients treated with Ipilimumab. Clinical Cancer Research, 22, 4848–4858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Perez-Romero, K., Rodriguez, R. M., Amedei, A., Barcelo-Coblijn, G., & Lopez, D. H. (2020). Immune landscape in tumor microenvironment: Implications for biomarker development and immunotherapy. International Journal of Molecular Sciences, 21.

    Google Scholar 

  277. Teng, M. W. L., Ngiow, S. F., Ribas, A., & Smyth, M. J. (2015). Classifying cancers based on T-cell infiltration and PD-L1. Cancer Research, 75, 2139–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Galon, J., Mlecnik, B., Bindea, G., Angell, H. K., Berger, A., Lagorce, C., Lugli, A., Zlobec, I., Hartmann, A., Bifulco, C., Nagtegaal, I. D., Palmqvist, R., Masucci, G. V., Botti, G., Tatangelo, F., Delrio, P., Maio, M., Laghi, L., Grizzi, F., Asslaber, M., D’Arrigo, C., Vidal-Vanaclocha, F., Zavadova, E., Chouchane, L., Ohashi, P. S., Hafezi-Bakhtiari, S., Wouters, B. G., Roehrl, M., Nguyen, L., Kawakami, Y., Hazama, S., Okuno, K., Ogino, S., Gibbs, P., Waring, P., Sato, N., Torigoe, T., Itoh, K., Patel, P. S., Shukla, S. N., Wang, Y. L., Kopetz, S., Sinicrope, F. A., Scripcariu, V., Ascierto, P. A., Marincola, F. M., Fox, B. A., & Pages, F. (2014). Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. Journal of Pathology, 232, 199–209.

    Article  CAS  Google Scholar 

  279. Mlecnik, B., Van den Eynde, M., Bindea, G., Church, S. E., Vasaturo, A., Fredriksen, T., Lafontaine, L., Haicheur, N., Marliot, F., Debetancourt, D., Pairet, G., Jouret-Mourin, A., Gigot, J. F., Hubert, C., Danse, E., Dragean, C., Carrasco, J., Humblet, Y., Valge-Archer, V., Berger, A., Pages, F., Machiels, J. P., & Galon, J. (2018). Comprehensive Intrametastatic immune quantification and major impact of Immunoscore on survival. Journal of the National Cancer Institute, 110.

    Google Scholar 

  280. Pagès, F., Mlecnik, B., Marliot, F., Bindea, G., Ou, F.-S., Bifulco, C., Lugli, A., Zlobec, I., Rau, T. T., Berger, M. D., Nagtegaal, I. D., Vink-Börger, E., Hartmann, A., Geppert, C., Kolwelter, J., Merkel, S., Grützmann, R., Van den Eynde, M., Jouret-Mourin, A., … Galon, J. (2018). International validation of the consensus immunoscore for the classification of colon cancer: A prognostic and accuracy study. The Lancet, 391(10135), 2128–2139.

    Article  Google Scholar 

  281. Haymaker, C. L., Kim, D., Uemura, M., Vence, L. M., Phillip, A., McQuail, N., Brown, P. D., Fernandez, I., Hudgens, C. W., Creasy, C., Hwu, W. J., Sharma, P., Tetzlaff, M. T., Allison, J. P., Hwu, P., Bernatchez, C., & Diab, A. (2017). Metastatic melanoma patient had a complete response with clonal expansion after whole brain radiation and PD-1 blockade. Cancer Immunology Research, 5, 100–105.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Olugbile, S., Park, J.-H., Hoffman, P., Szeto, L., Patel, J., Vigneswaran, W. T., Vokes, E., Nakamura, Y., & Klyotani, K. (2017). Sustained Oligoclonal T cell expansion correlates with durable response to immune checkpoint blockade in lung cancer. Journal of Cancer Science & Therapy, 9, 717–722.

    Article  CAS  Google Scholar 

  283. Inoue, H., Park, J. H., Kiyotani, K., Zewde, M., Miyashita, A., Jinnin, M., Kiniwa, Y., Okuyama, R., Tanaka, R., Fujisawa, Y., Kato, H., Morita, A., Asai, J., Katoh, N., Yokota, K., Akiyama, M., Ihn, H., Fukushima, S., & Nakamura, Y. (2016). Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma. Oncoimmunology, 5.

    Google Scholar 

  284. Looney, T. J., Topacio-Hall, D., Lowman, G., Conroy, J., Morrison, C., Oh, D., Fong, L., & Zhang, L. (2019). TCR convergence in individuals treated with immune checkpoint inhibition for Cancer. Frontiers in Immunology, 10, 2985.

    Article  CAS  PubMed  Google Scholar 

  285. Tang, X., Huang, Y., Lei, J., Luo, H., & Zhu, X. (2019). The single-cell sequencing: New developments and medical applications. Cell & Bioscience, 9, 53.

    Article  Google Scholar 

  286. Gibellini, L., De Biasi, S., Porta, C., Lo Tartaro, D., Depenni, R., Pellacani, G., Sabbatini, R., & Cossarizza, A. (2020). Single-cell approaches to profile the response to immune checkpoint inhibitors. Frontiers in Immunology, 11, 490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W., Yuan, J. D., Wong, P., Ho, T. S., Miller, M. L., Rekhtman, N., Moreira, A. L., Ibrahim, F., Bruggeman, C., Gasmi, B., Zappasodi, R., Maeda, Y., Sander, C., Garon, E. B., Merghoub, T., Wolchok, J. D., Schumacher, T. N., & Chan, T. A. (2015). Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 348, 124–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Snyder, A., Makarov, V., Merghoub, T., Yuan, J., Zaretsky, J. M., Desrichard, A., Walsh, L. A., Postow, M. A., Wong, P., Ho, T. S., Hollmann, T. J., Bruggeman, C., Kannan, K., Li, Y., Elipenahli, C., Liu, C., Harbison, C. T., Wang, L., Ribas, A., Wolchok, J. D., & Chan, T. A. (2014). Genetic basis for clinical response to CTLA-4 blockade in melanoma. The New England Journal of Medicine, 371, 2189–2199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., Berent-Maoz, B., Pang, J., Chmielowski, B., Cherry, G., Seja, E., Lomeli, S., Kong, X., Kelley, M. C., Sosman, J. A., Johnson, D. B., Ribas, A., & Lo, R. S. (2016). Genomic and Transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell, 165, 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., Skora, A. D., Luber, B. S., Azad, N. S., Laheru, D., Biedrzycki, B., Donehower, R. C., Zaheer, A., Fisher, G. A., Crocenzi, T. S., Lee, J. J., Duffy, S. M., Goldberg, R. M., de la Chapelle, A., Koshiji, M., Bhaijee, F., Huebner, T., Hruban, R. H., Wood, L. D., Cuka, N., Pardoll, D. M., Papadopoulos, N., Kinzler, K. W., Zhou, S., Cornish, T. C., Taube, J. M., Anders, R. A., Eshleman, J. R., Vogelstein, B., & Diaz, L. A., Jr. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. The New England Journal of Medicine, 372, 2509–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V., Bignell, G. R., Bolli, N., Borg, A., Borresen-Dale, A. L., Boyault, S., Burkhardt, B., Butler, A. P., Caldas, C., Davies, H. R., Desmedt, C., Eils, R., Eyfjord, J. E., Foekens, J. A., … Stratton, M. R. (2013). Signatures of mutational processes in human cancer. Nature, 500, 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Lastwika, K. J., Wilson, W., Li, Q. K., Norris, J., Xu, H. Y., Ghazarian, S. R., Kitagawa, H., Kawabata, S., Taube, J. M., Yao, S., Liu, L. N., Gills, J. J., & Dennis, P. A. (2016). Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung Cancer. Cancer Research, 76, 227–238.

    Article  CAS  PubMed  Google Scholar 

  293. Ribas, A., Robert, C., Hodi, F. S., Wolchok, J. D., Joshua, A. M., Hwu, W. J., Weber, J. S., Zarour, H. M., Kefford, R., Loboda, A., Albright, A., Kang, S. P., Ebbinghaus, S., Yearley, J., Murphy, E., Nebozhyn, M., Lunceford, J. K., McClanahan, T., Ayers, M., & Daud, A. (2015). Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. Journal of Clinical Oncology, 33.

    Google Scholar 

  294. Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Albright, A., Cheng, J., Kang, S. P., Ebbinghaus, S., Yearley, J., Shankaran, V., Seiwert, T., Ribas, A., & McClanahan, T. (2015). Relationship between immune gene signatures and clinical response to PD-1 blockade with pembrolizumab (MK-3475) in patients with advanced solid tumors. Journal for Immunotherapy of Cancer, 3, 80.

    Article  Google Scholar 

  295. Higgs, B. W., Morehouse, C., Streicher, K., Rebelatto, M. C., Steele, K., Jin, X., Pilataxi, F., Brohawn, P. Z., Blake-Haskins, J. A., Gupta, A. K., & Ranade, K. (2016). Relationship of baseline tumoral IFNγ mRNA and PD-L1 protein expression to overall survival in durvalumab-treated NSCLC patients. Journal of Clinical Oncology, 34, 3036.

    Article  Google Scholar 

  296. Fehrenbacher, L., Spira, A., Ballinger, M., Kowanetz, M., Vansteenkiste, J., Mazieres, J., Park, K., Smith, D., Artal-Cortes, A., Lewanski, C., Braiteh, F., Waterkamp, D., He, P., Zou, W., Chen, D. S., Yi, J., Sandler, A., Rittmeyer, A., & Group, P. S. (2016). Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet, 387, 1837–1846.

    Article  CAS  PubMed  Google Scholar 

  297. Blank, C. U., Haanen, J. B., Ribas, A., & Schumacher, T. N. (2016). Cancer immunology. The cancer “immunogram”. Science, 352, 658–660.

    Article  CAS  PubMed  Google Scholar 

  298. Karasaki, T., Nagayama, K., Kuwano, H., Nitadori, J. I., Sato, M., Anraku, M., Hosoi, A., Matsushita, H., Morishita, Y., Kashiwabara, K., Takazawa, M., Ohara, O., Kakimi, K., & Nakajima, J. (2017). An Immunogram for the Cancer-immunity cycle: Towards personalized immunotherapy of lung Cancer. Journal of Thoracic Oncology, 12, 791–803.

    Article  PubMed  Google Scholar 

  299. Martens, A., Wistuba-Hamprecht, K., Geukes Foppen, M., Yuan, J., Postow, M. A., Wong, P., Romano, E., Khammari, A., Dreno, B., Capone, M., Ascierto, P. A., Di Giacomo, A. M., Maio, M., Schilling, B., Sucker, A., Schadendorf, D., Hassel, J. C., Eigentler, T. K., Martus, P., Wolchok, J. D., Blank, C., Pawelec, G., Garbe, C., & Weide, B. (2016). Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with Ipilimumab. Clinical Cancer Research, 22, 2908–2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Hopkins, A. M., Rowland, A., Kichenadasse, G., Wiese, M. D., Gurney, H., McKinnon, R. A., Karapetis, C. S., & Sorich, M. J. (2017). Predicting response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers. British Journal of Cancer, 117, 913–920.

    Article  PubMed  PubMed Central  Google Scholar 

  301. Manson, G., Norwood, J., Marabelle, A., Kohrt, H., & Houot, R. (2016). Biomarkers associated with checkpoint inhibitors. Annals of Oncology, 27, 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  302. Delyon, J., Mateus, C., Lefeuvre, D., Lanoy, E., Zitvogel, L., Chaput, N., Roy, S., Eggermont, A. M. M., Routier, E., & Robert, C. (2013). Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: An early increase in lymphocyte and eosinophil counts is associated with improved survival. Annals of Oncology, 24, 1697–1703.

    Article  CAS  PubMed  Google Scholar 

  303. Ku, G. Y., Yuan, J. D., Page, D. B., Schroeder, S. E. A., Panageas, K. S., Carvajal, R. D., Chapman, P. B., Schwartz, G. K., Allison, J. P., & Wolchok, J. D. (2010). Single-institution experience with Ipilimumab in advanced melanoma patients in the compassionate use setting lymphocyte count after 2 doses correlates with survival. Cancer, 116, 1767–1775.

    Article  CAS  PubMed  Google Scholar 

  304. Wilgenhof, S., Du Four, S., Vandenbroucke, F., Everaert, H., Salmon, I., Lienard, D., Marmol, V. D., & Neyns, B. (2013). Single-center experience with ipilimumab in an expanded access program for patients with pretreated advanced melanoma. Journal of Immunotherapy, 36, 215–222.

    Article  CAS  PubMed  Google Scholar 

  305. Di Giacomo, A. M., Danielli, R., Calabro, L., Bertocci, E., Nannicini, C., Giannarelli, D., Balestrazzi, A., Vigni, F., Riversi, V., Miracco, C., Biagioli, M., Altomonte, M., & Maio, M. (2011). Ipilimumab experience in heavily pretreated patients with melanoma in an expanded access program at the University Hospital of Siena (Italy). Cancer Immunology Immunotherapy, 60, 467–477.

    Article  PubMed  CAS  Google Scholar 

  306. Simeone, E., Gentilcore, G., Giannarelli, D., Grimaldi, A. M., Caraco, C., Curvietto, M., Esposito, A., Paone, M., Palla, M., Cavalcanti, E., Sandomenico, F., Petrillo, A., Botti, G., Fulciniti, F., Palmieri, G., Queirolo, P., Marchetti, P., Ferraresi, V., Rinaldi, G., Pistillo, M. P., Ciliberto, G., Mozzillo, N., & Ascierto, P. A. (2014). Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunology Immunotherapy, 63, 675–683.

    Article  CAS  PubMed  Google Scholar 

  307. Gebhardt, C., Sevko, A., Jiang, H. H., Lichtenberger, R., Reith, M., Tarnanidis, K., Holland-Letz, T., Umansky, L., Beckhove, P., Sucker, A., Schadendorf, D., Utikal, J., & Umansky, V. (2015). Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with Ipilimumab. Clinical Cancer Research, 21, 5453–5459.

    Article  CAS  PubMed  Google Scholar 

  308. Kelderman, S., Heemskerk, B., van Tinteren, H., van den Brom, R. R., Hospers, G. A., van den Eertwegh, A. J., Kapiteijn, E. W., de Groot, J. W., Soetekouw, P., Jansen, R. L., Fiets, E., Furness, A. J., Renn, A., Krzystanek, M., Szallasi, Z., Lorigan, P., Gore, M. E., Schumacher, T. N., Haanen, J. B., Larkin, J. M., & Blank, C. U. (2014). Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunology, Immunotherapy, 63, 449–458.

    CAS  PubMed  Google Scholar 

  309. Lee, J. H., Long, G. V., Boyd, S., Lo, S., Menzies, A. M., Tembe, V., Guminski, A., Jakrot, V., Scolyer, R. A., Mann, G. J., Kefford, R. F., Carlino, M. S., & Rizos, H. (2017). Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Annals of Oncology, 28, 1130–1136.

    Article  CAS  PubMed  Google Scholar 

  310. Kamphorst, A. O., Pillai, R. N., Yang, S., Nasti, T. H., Akondy, R. S., Wieland, A., Sica, G. L., Yu, K., Koenig, L., Patel, N. T., Behera, M., Wu, H., McCausland, M., Chen, Z. J., Zhang, C., Khuri, F. R., Owonikoko, T. K., Ahmed, R., & Ramalingam, S. S. (2017). Proliferation of PD-1+CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 114, 4993–4998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Shaikh, F. Y., Gills, J. J., & Sears, C. L. (2019). Impact of the microbiome on checkpoint inhibitor treatment in patients with non-small cell lung cancer and melanoma. eBioMedicine, 48, 642–647.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Gopalakrishnan, V., Spencer, C. N., Nezi, L., Reuben, A., Andrews, M. C., Karpinets, T. V., Prieto, P. A., Vicente, D., Hoffman, K., Wei, S. C., Cogdill, A. P., Zhao, L., Hudgens, C. W., Hutchinson, D. S., Manzo, T., de Macedo, M. P., Cotechini, T., Kumar, T., Chen, W. S., … Wargo, J. A. (2018). Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 359, 97–103.

    Article  CAS  PubMed  Google Scholar 

  313. Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y. Y., Alegre, M. L., Luke, J. J., & Gajewski, T. F. (2018). The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science, 359, 104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Hajjar, J., Mendoza, T., Zhang, L. L., Fu, S. Q., Piha-Paul, S. A., Hong, D. S., Janku, F., Karp, D. D., Ballhausen, A., Gong, J., Zarifa, A., Peterson, C. B., Meric-Bernstam, F., Jenq, R., & Naing, A. (2021). Associations between the gut microbiome and fatigue in cancer patients. Scientific Reports, 11.

    Google Scholar 

  315. Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., Powderly, J. D., Carvajal, R. D., Sosman, J. A., Atkins, M. B., Leming, P. D., Spigel, D. R., Antonia, S. J., Horn, L., Drake, C. G., Pardoll, D. M., Chen, L., Sharfman, W. H., Anders, R. A., … Sznol, M. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366, 2443–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Alban, T. J., & Chan, T. A. (2021). Immunotherapy biomarkers: The long and winding road. Nature Reviews Clinical Oncology.

    Google Scholar 

  317. Litchfield, K. R., Reading, J., McGranahan, N., Quezada, S., & Swanton, C. (2020). Meta-analysis of tumour and T cell intrinsic mechanisms of sensitization to checkpoint inhibition. Annals of Oncology, 31, S1092-S.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettzy Stephen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stephen, B., Hajjar, J. (2021). Immune System in Action. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-79308-1_1

Download citation

Publish with us

Policies and ethics