Skip to main content

Advertisement

Log in

MR elastography of liver: current status and future perspectives

  • Special Section: Diffuse Liver Disease
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Non-invasive evaluation of liver fibrosis has evolved over the last couple of decades. Currently, elastography techniques are the most widely used non-invasive methods for clinical evaluation of chronic liver disease (CLD). MR elastography (MRE) of the liver has been used in the clinical practice for nearly a decade and continues to be widely accepted for detection and staging of liver fibrosis. With MRE, one can directly visualize propagating shear waves through the liver and an inversion algorithm in the scanner automatically converts the shear wave properties into an elastogram (stiffness map) on which liver stiffness can be calculated. The commonly used MRE method, two-dimensional gradient recalled echo (2D-GRE) sequence has produced excellent results in the evaluation of liver fibrosis in CLD from various etiologies and newer clinical indications continue to emerge. Advances in MRE technique, including 3D MRE, automated liver elasticity calculation, improvements in shear wave delivery and patient experience, are promising to provide a faster and more reliable MRE of liver. Innovations, including evaluation of mechanical parameters, such as loss modulus, displacement, and volumetric strain, are promising for comprehensive evaluation of CLD as well as understanding pathophysiology, and in differentiating various etiologies of CLD. In this review, the current status of the MRE of liver in CLD are outlined and followed by a brief description of advanced techniques and innovations in MRE of liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

(Reproduced with permission from reference [114])

Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Byass P. The global burden of liver disease: a challenge for methods and for public health. BMC Med 2014; 12:159

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 2019; 65:37-55

    Article  CAS  PubMed  Google Scholar 

  3. Martinez SM, Foucher J, Combis JM, et al. Longitudinal liver stiffness assessment in patients with chronic hepatitis C undergoing antiviral therapy. PLoS One 2012; 7:e47715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013; 381:468-475

    Article  CAS  PubMed  Google Scholar 

  5. Campana L, Iredale JP. Regression of Liver Fibrosis. Semin Liver Dis 2017; 37:1-10

    Article  PubMed  Google Scholar 

  6. Regev A, Berho M, Jeffers LJ, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. The American journal of gastroenterology 2002; 97:2614-2618

    Article  PubMed  Google Scholar 

  7. Baranova A, Lal P, Birerdinc A, Younossi ZM. Non-invasive markers for hepatic fibrosis. BMC Gastroenterol 2011; 11:91

    Article  PubMed  PubMed Central  Google Scholar 

  8. Venkatesh SK, Yin M, Ehman RL. Magnetic resonance elastography of liver: technique, analysis, and clinical applications. J Magn Reson Imaging 2013; 37:544-555

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bashir M, Horowitz J, Kamel I, et al. ACR Appropriateness Criteria Chronic Liver Disease. Available at https://acsearch.acr.org/docs/3098416/Narrative/. American College of Radiology.

  10. Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. Hepatology 2017; 66:1486-1501

    Article  CAS  PubMed  Google Scholar 

  11. Yoon JH, Lee JM, Woo HS, et al. Staging of hepatic fibrosis: comparison of magnetic resonance elastography and shear wave elastography in the same individuals. Korean J Radiol 2013; 14:202-212

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huwart L, Sempoux C, Vicaut E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 2008; 135:32-40

    Article  PubMed  Google Scholar 

  13. Mueller S, Sandrin L. Liver stiffness: a novel parameter for the diagnosis of liver disease. Hepat Med 2010; 2:49-67

    Article  PubMed  PubMed Central  Google Scholar 

  14. Venkatesh SK, Wells ML, Miller FH, et al. Magnetic resonance elastography: beyond liver fibrosis-a case-based pictorial review. Abdom Radiol (NY) 2018; 43:1590-1611

    Article  Google Scholar 

  15. Ichikawa S, Motosugi U, Nakazawa T, et al. Hepatitis activity should be considered a confounder of liver stiffness measured with MR elastography. J Magn Reson Imaging 2015; 41:1203-1208

    Article  PubMed  Google Scholar 

  16. Guglielmo FF, Venkatesh SK, Mitchell DG. Liver MR Elastography Technique and Image Interpretation: Pearls and Pitfalls. Radiographics 2019; 39:1983-2002

    Article  PubMed  Google Scholar 

  17. Rezvani Habibabadi R, Khoshpouri P, Ghadimi M, et al. Comparison between ROI-based and volumetric measurements in quantifying heterogeneity of liver stiffness using MR elastography. Eur Radiol 2020; 30:1609-1615

    Article  PubMed  Google Scholar 

  18. Venkatesh SK, Wang G, Teo LL, Ang BW. Magnetic resonance elastography of liver in healthy Asians: normal liver stiffness quantification and reproducibility assessment. J Magn Reson Imaging 2014; 39:1-8

    Article  PubMed  Google Scholar 

  19. Shire NJ, Yin M, Chen J, et al. Test-retest repeatability of MR elastography for noninvasive liver fibrosis assessment in hepatitis C. J Magn Reson Imaging 2011; 34:947-955

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee Y, Lee JM, Lee JE, et al. MR elastography for noninvasive assessment of hepatic fibrosis: reproducibility of the examination and reproducibility and repeatability of the liver stiffness value measurement. J Magn Reson Imaging 2014; 39:326-331

    Article  PubMed  Google Scholar 

  21. Serai SD, Obuchowski NA, Venkatesh SK, et al. Repeatability of MR Elastography of Liver: A Meta-Analysis. Radiology 2017; 285:92-100

    Article  PubMed  Google Scholar 

  22. Yin M, Talwalkar JA, Glaser KJ, et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 2007; 5:1207-1213.e1202

    Google Scholar 

  23. Singh S, Venkatesh SK, Loomba R, et al. Magnetic resonance elastography for staging liver fibrosis in non-alcoholic fatty liver disease: a diagnostic accuracy systematic review and individual participant data pooled analysis. Eur Radiol 2016; 26:1431-1440

    Article  PubMed  Google Scholar 

  24. Cui J, Heba E, Hernandez C, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the Diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: A prospective study. Hepatology (Baltimore, Md) 2016; 63:453-461

    Article  Google Scholar 

  25. Serai SD, Yin M, Wang H, Ehman RL, Podberesky DJ. Cross-vendor validation of liver magnetic resonance elastography. Abdom Imaging 2015; 40:789-794

    Article  PubMed  PubMed Central  Google Scholar 

  26. Trout AT, Serai S, Mahley AD, et al. Liver Stiffness Measurements with MR Elastography: Agreement and Repeatability across Imaging Systems, Field Strengths, and Pulse Sequences. Radiology 2016; 281:793-804

    Article  PubMed  Google Scholar 

  27. Yasar TK, Wagner M, Bane O, et al. Interplatform reproducibility of liver and spleen stiffness measured with MR elastography. J Magn Reson Imaging 2016; 43:1064-1072

    Article  PubMed  Google Scholar 

  28. Hallinan JT, Alsaif HS, Wee A, Venkatesh SK. Magnetic resonance elastography of liver: influence of intravenous gadolinium administration on measured liver stiffness. Abdom Imaging 2015; 40:783-788

    Article  PubMed  Google Scholar 

  29. Kim DW, Kim SY, Yoon HM, Kim KW, Byun JH. Comparison of technical failure of MR elastography for measuring liver stiffness between gradient-recalled echo and spin-echo echo-planar imaging: A systematic review and meta-analysis. J Magn Reson Imaging 2020; 51:1086-1102

    Article  PubMed  Google Scholar 

  30. Singh S, Venkatesh SK, Wang Z, et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 2015; 13:440-451.e446

    Google Scholar 

  31. Venkatesh SK, Wang G, Lim SG, Wee A. Magnetic resonance elastography for the detection and staging of liver fibrosis in chronic hepatitis B. Eur Radiol 2014; 24:70-78

    Article  PubMed  Google Scholar 

  32. Ichikawa S, Motosugi U, Ichikawa T, et al. Magnetic resonance elastography for staging liver fibrosis in chronic hepatitis C. Magn Reson Med Sci 2012; 11:291-297

    Article  PubMed  Google Scholar 

  33. Venkatesh SK, Yin M, Takahashi N, Glockner JF, Talwalkar JA, Ehman RL. Non-invasive detection of liver fibrosis: MR imaging features vs. MR elastography. Abdominal imaging 2015; 40:766-775

    Article  PubMed  Google Scholar 

  34. Rustogi R, Horowitz J, Harmath C, et al. Accuracy of MR Elastography and Anatomic MR Imaging Features in the Diagnosis of Severe Hepatic Fibrosis and Cirrhosis. Journal of magnetic resonance imaging : JMRI 2012; 35:1356-1364

    Article  PubMed  Google Scholar 

  35. Venkatesh SK, Xu S, Tai D, Yu H, Wee A. Correlation of MR elastography with morphometric quantification of liver fibrosis (Fibro-C-Index) in chronic hepatitis B. Magn Reson Med 2014; 72:1123-1129

    Article  PubMed  Google Scholar 

  36. Standish RA, Cholongitas E, Dhillon A, Burroughs AK, Dhillon AP. An appraisal of the histopathological assessment of liver fibrosis. Gut 2006; 55:569-578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Masugi Y, Abe T, Tsujikawa H, et al. Quantitative assessment of liver fibrosis reveals a nonlinear association with fibrosis stage in nonalcoholic fatty liver disease. Hepatol Commun 2018; 2:58-68

    Article  CAS  PubMed  Google Scholar 

  38. Bohte AE, de Niet A, Jansen L, et al. Non-invasive evaluation of liver fibrosis: a comparison of ultrasound-based transient elastography and MR elastography in patients with viral hepatitis B and C. European Radiology 2014; 24:638-648

    Article  PubMed  Google Scholar 

  39. Lee JE, Lee JM, Lee KB, et al. Noninvasive assessment of hepatic fibrosis in patients with chronic hepatitis B viral infection using magnetic resonance elastography. Korean J Radiol 2014; 15:210-217

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ichikawa S, Motosugi U, Morisaka H, et al. Validity and Reliability of Magnetic Resonance Elastography for Staging Hepatic Fibrosis in Patients with Chronic Hepatitis B. Magn 2015; 14:211-221

    CAS  Google Scholar 

  41. Wu WP, Chou CT, Chen RC, Lee CW, Lee KW, Wu HK. Non-Invasive Evaluation of Hepatic Fibrosis: The Diagnostic Performance of Magnetic Resonance Elastography in Patients with Viral Hepatitis B or C. PLoS ONE [Electronic Resource] 2015; 10:e0140068

    Article  CAS  Google Scholar 

  42. Shi Y, Xia F, Li QJ, et al. Magnetic Resonance Elastography for the Evaluation of Liver Fibrosis in Chronic Hepatitis B and C by Using Both Gradient-Recalled Echo and Spin-Echo Echo Planar Imaging: A Prospective Study. The American journal of gastroenterology 2016; 111:823-833

    Article  PubMed  Google Scholar 

  43. Hennedige TP, Wang G, Leung FP, et al. Magnetic Resonance Elastography and Diffusion Weighted Imaging in the Evaluation of Hepatic Fibrosis in Chronic Hepatitis B. Gut Liver 2017; 11:401-408

    Article  PubMed  Google Scholar 

  44. Takamura T, Motosugi U, Ichikawa S, et al. Usefulness of MR elastography for detecting clinical progression of cirrhosis from child-pugh class A to B in patients with type C viral hepatitis. J Magn Reson Imaging 2016; 44:715-722

    Article  PubMed  Google Scholar 

  45. Bensamoun SF, Leclerc GE, Debernard L, et al. Cutoff values for alcoholic liver fibrosis using magnetic resonance elastography technique. Alcohol Clin Exp Res 2013; 37:811-817

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehman RL. Early Detection of Nonalcoholic Steatohepatitis in Patients with Nonalcoholic Fatty Liver Disease by Using MR Elastography. Radiology 2011; 259:749-756

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kim D, Kim WR, Talwalkar JA, Kim HJ, Ehman RL. Advanced fibrosis in nonalcoholic fatty liver disease: noninvasive assessment with MR elastography. Radiology 2013; 268:411-419

    Article  PubMed  PubMed Central  Google Scholar 

  48. Loomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. Hepatology (Baltimore, Md) 2014; 60:1920-1928

    Article  CAS  Google Scholar 

  49. Costa-Silva L, Ferolla SM, Lima AS, Vidigal PVT, Ferrari TCA. MR elastography is effective for the non-invasive evaluation of fibrosis and necroinflammatory activity in patients with nonalcoholic fatty liver disease. Eur J Radiol 2018; 98:82-89

    Article  PubMed  Google Scholar 

  50. Loomba R, Cui J, Wolfson T, et al. Novel 3D Magnetic Resonance Elastography for the Noninvasive Diagnosis of Advanced Fibrosis in NAFLD: A Prospective Study. The American journal of gastroenterology 2016; 111:986-994

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bookwalter CA, Venkatesh SK, Eaton JE, Smyrk TD, Ehman RL. MR elastography in primary sclerosing cholangitis: correlating liver stiffness with bile duct strictures and parenchymal changes. Abdom Radiol (NY) 2018; 43:3260-3270

    Article  Google Scholar 

  52. Eaton JE, Dzyubak B, Venkatesh SK, et al. Performance of magnetic resonance elastography in primary sclerosing cholangitis. J Gastroenterol Hepatol 2016; 31:1184-1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Eaton JE, Sen A, Hoodeshenas S, et al. Changes in Liver Stiffness, Measured by Magnetic Resonance Elastography, Associated With Hepatic Decompensation in Patients With Primary Sclerosing Cholangitis. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 2019;

  54. Idilman IS, Low HM, Bakhshi Z, Eaton J, Venkatesh SK. Comparison of liver stiffness measurement with MRE and liver and spleen volumetry for prediction of disease severity and hepatic decompensation in patients with primary sclerosing cholangitis. Abdom Radiol (NY) 2020; 45:701-709

    Article  Google Scholar 

  55. Wang J, Malik N, Yin M, et al. Magnetic resonance elastography is accurate in detecting advanced fibrosis in autoimmune hepatitis. World J Gastroenterol 2017; 23:859-868

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jhaveri KS, Hosseini-Nik H, Sadoughi N, et al. The development and validation of magnetic resonance elastography for fibrosis staging in primary sclerosing cholangitis. Eur Radiol 2019; 29:1039-1047

    Article  PubMed  Google Scholar 

  57. Chang W, Lee JM, Yoon JH, et al. Liver Fibrosis Staging with MR Elastography: Comparison of Diagnostic Performance between Patients with Chronic Hepatitis B and Those with Other Etiologic Causes. Radiology 2016; 280:88-97

    Article  PubMed  Google Scholar 

  58. Xu XY, Wang WS, Zhang QM, et al. Performance of common imaging techniques. World J Clin Cases 2019; 7:2022-2037

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hennedige TP, Hallinan JT, Leung FP, et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions. Eur Radiol 2016; 26:398-406

    Article  PubMed  Google Scholar 

  60. Fu F, Li X, Chen C, et al. Non-invasive assessment of hepatic fibrosis: comparison of MR elastography to transient elastography and intravoxel incoherent motion diffusion-weighted MRI. Abdom Radiol (NY) 2020; 45:73-82

    Article  Google Scholar 

  61. Wang Y, Ganger DR, Levitsky J, et al. Assessment of chronic hepatitis and fibrosis: comparison of MR elastography and diffusion-weighted imaging. AJR Am J Roentgenol 2011; 196:553-561

    Article  PubMed  PubMed Central  Google Scholar 

  62. Besa C, Wagner M, Lo G, et al. Detection of liver fibrosis using qualitative and quantitative MR elastography compared to liver surface nodularity measurement, gadoxetic acid uptake, and serum markers. J Magn Reson Imaging 2018; 47:1552-1561

    Article  PubMed  Google Scholar 

  63. Hoffman DH, Ayoola A, Nickel D, Han F, Chandarana H, Shanbhogue KP. T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis. Abdom Radiol (NY) 2020; 45:692-700

    Article  Google Scholar 

  64. Kim JW, Lee YS, Park YS, et al. Multiparametric MR Index for the Diagnosis of Non-Alcoholic Steatohepatitis in Patients with Non-Alcoholic Fatty Liver Disease. Sci Rep 2020; 10:2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Venkatesh SK, Ehman RL. Magnetic resonance elastography of liver. Magn Reson Imaging Clin N Am 2014; 22:433-446

    Article  PubMed  Google Scholar 

  66. Venkatesh SK, Wells ML, Miller FH, et al. Magnetic resonance elastography: beyond liver fibrosis-a case-based pictorial review. Abdom Radiol (NY) 2017

  67. Motosugi U, Ichikawa T, Koshiishi T, et al. Liver stiffness measured by magnetic resonance elastography as a risk factor for hepatocellular carcinoma: a preliminary case-control study. Eur Radiol 2013; 23:156-162

    Article  PubMed  Google Scholar 

  68. Lee DH, Lee JM, Chang W, et al. Prognostic Role of Liver Stiffness Measurements Using Magnetic Resonance Elastography in Patients with Compensated Chronic Liver Disease. Eur Radiol 2018; 28:3513-3521

    Article  PubMed  Google Scholar 

  69. Yasui Y, Abe T, Kurosaki M, et al. Non-invasive liver fibrosis assessment correlates with collagen and elastic fiber quantity in patients with hepatitis C virus infection. Hepatol Res 2019; 49:33-41

    Article  CAS  PubMed  Google Scholar 

  70. Ichikawa S, Motosugi U, Enomoto N, Onishi H. Magnetic resonance elastography can predict development of hepatocellular carcinoma with longitudinally acquired two-point data. Eur Radiol 2019; 29:1013-1021

    Article  PubMed  Google Scholar 

  71. Cho HJ, Kim B, Kim HJ, et al. Liver stiffness measured by MR elastography is a predictor of early HCC recurrence after treatment. Eur Radiol 2020.

  72. Wang J, Shan Q, Liu Y, et al. 3D MR Elastography of Hepatocellular Carcinomas as a Potential Biomarker for Predicting Tumor Recurrence. J Magn Reson Imaging 2019; 49:719-730

    Article  PubMed  Google Scholar 

  73. Talwalkar JA, Yin M, Venkatesh S, et al. Feasibility of in vivo MR elastographic splenic stiffness measurements in the assessment of portal hypertension. AJR Am J Roentgenol 2009; 193:122-127

    Article  PubMed  PubMed Central  Google Scholar 

  74. Morisaka H, Motosugi U, Ichikawa S, Sano K, Ichikawa T, Enomoto N. Association of splenic MR elastographic findings with gastroesophageal varices in patients with chronic liver disease. J Magn Reson Imaging 2015; 41:117-124

    Article  PubMed  Google Scholar 

  75. Sun HY, Lee JM, Han JK, Choi BI. Usefulness of MR elastography for predicting esophageal varices in cirrhotic patients. J Magn Reson Imaging 2014; 39:559-566

    Article  PubMed  Google Scholar 

  76. Abe H, Midorikawa Y, Matsumoto N, et al. Prediction of esophageal varices by liver and spleen MR elastography. Eur Radiol 2019; 29:6611-6619

    Article  PubMed  Google Scholar 

  77. Wagner M, Hectors S, Bane O, et al. Noninvasive prediction of portal pressure with MR elastography and DCE-MRI of the liver and spleen: Preliminary results. J Magn Reson Imaging 2018

  78. Ronot M, Lambert S, Elkrief L, et al. Assessment of portal hypertension and high-risk oesophageal varices with liver and spleen three-dimensional multifrequency MR elastography in liver cirrhosis. Eur Radiol 2014; 24:1394-1402

    PubMed  Google Scholar 

  79. Asrani SK, Talwalkar JA, Kamath PS, et al. Role of Magnetic Resonance Elastography in compensated and decompensated liver disease. Journal of hepatology 2014; 60:934-939

    Article  PubMed  Google Scholar 

  80. Younossi ZM, Stepanova M, Younossi Y, et al. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 2020; 69:564-568

    Article  PubMed  Google Scholar 

  81. Bedossa P. Pathology of non-alcoholic fatty liver disease. Liver Int 2017; 37 Suppl 1:85-89

    Article  PubMed  Google Scholar 

  82. Younossi ZM, Stepanova M, Rafiq N, et al. Nonalcoholic steatofibrosis independently predicts mortality in nonalcoholic fatty liver disease. Hepatol Commun 2017; 1:421-428

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cui J, Ang B, Haufe W, et al. Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease: a prospective study. Aliment Pharmacol Ther 2015; 41:1271-1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Serai SD, Dillman JR, Trout AT. Spin-echo Echo-planar Imaging MR Elastography versus Gradient-echo MR Elastography for Assessment of Liver Stiffness in Children and Young Adults Suspected of Having Liver Disease. Radiology 2017; 282:761-770

    Article  PubMed  Google Scholar 

  85. Trout AT, Sheridan RM, Serai SD, et al. Diagnostic Performance of MR Elastography for Liver Fibrosis in Children and Young Adults with a Spectrum of Liver Diseases. Radiology 2018:172099

  86. Wallihan DB, Podberesky DJ, Marino BS, Sticka JS, Serai S. Relationship of MR elastography determined liver stiffness with cardiac function after Fontan palliation. Journal of Magnetic Resonance Imaging 2014; 40:1328-1335

    Article  PubMed  Google Scholar 

  87. Joshi M, Dillman JR, Towbin AJ, Serai SD, Trout AT. MR elastography: high rate of technical success in pediatric and young adult patients. Pediatr Radiol 2017; 47:838-843

    Article  PubMed  Google Scholar 

  88. Etchell E, Jugé L, Hatt A, Sinkus R, Bilston LE. Liver Stiffness Values Are Lower in Pediatric Subjects than in Adults and Increase with Age: A Multifrequency MR Elastography Study. Radiology 2017; 283:222-230

    Article  PubMed  Google Scholar 

  89. Sawh MC, Newton KP, Goyal NP, et al. Normal range for MR elastography measured liver stiffness in children without liver disease. J Magn Reson Imaging 2020; 51:919-927

    Article  PubMed  Google Scholar 

  90. Navin PJ, Olson MC, Knudsen JM, Venkatesh SK. Elastography in the evaluation of liver allograft. Abdom Radiol (NY) 2020;

  91. El-Meteini M, Sakr M, Eldorry A, et al. Non-Invasive Assessment of Graft Fibrosis After Living Donor Liver Transplantation: Is There Still a Role for Liver Biopsy? Transplant Proc 2019; 51:2451-2456

    Article  CAS  PubMed  Google Scholar 

  92. Lee VS, Miller FH, Omary RA, et al. Magnetic resonance elastography and biomarkers to assess fibrosis from recurrent hepatitis C in liver transplant recipients. Transplantation 2011; 92:581-586

    Article  PubMed  Google Scholar 

  93. Singh S, Venkates SK, Keaveny A, et al. Diagnostic accuracy of magnetic resonance elastography in liver transplant recipients: A pooled analysis. Ann Hepatol 2016; 15:363-376

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen J SD, Glaser K, Yin M. Ergonomic Flexible Drivers for Hepatic MR Elastography. In: ISMRM. Stockholm, Sweden, 2010

  95. Wang K, Manning P, Szeverenyi N, et al. Repeatability and reproducibility of 2D and 3D hepatic MR elastography with rigid and flexible drivers at end-expiration and end-inspiration in healthy volunteers. Abdom Radiol (NY) 2017; 42:2843-2854

    Article  Google Scholar 

  96. Morin CE, Dillman JR, Serai SD, Trout AT, Tkach JA, Wang H. Comparison of Standard Breath-Held, Free-Breathing, and Compressed Sensing 2D Gradient-Recalled Echo MR Elastography Techniques for Evaluating Liver Stiffness. AJR Am J Roentgenol 2018; 211:W279-W287

    Article  PubMed  Google Scholar 

  97. Murphy IG, Graves MJ, Reid S, et al. Comparison of breath-hold, respiratory navigated and free-breathing MR elastography of the liver. Magn Reson Imaging 2017; 37:46-50

    Article  PubMed  Google Scholar 

  98. Glaser K CJ, Ehman R. . Fast 2D hepatic MR elastography for free-breathing and short breath hold applications. In: ISMRM. Toronto, Ontario, Canada, 2015

  99. Jiahui Li BD, Kevin J. Glaser, Ziying Yin, Jun Chen, Alina Allen, Sudhakar K. Venkatesh, Armando Manduca, Vijay Shah, Richard L. Ehman, Meng Yin. Repeatability and Clinical Performance of Non-gated, Free-breathing, MR Elastography (MRE) of the Liver. In: ISMRM. Montreal, Canada, 2019

  100. Ziying Yin BD, Jiahui Li, Kevin J. Glaser, Sudhakar K. Venkatesh, Armando Manduca, Richard L. Ehman, Meng Yin. . A Feasibility Study of Nonlinear Mechanical Response Assessment of the Liver with MR Elastography (MRE). . In: ISMRM. Paris, France 2018

  101. Wagner M, Besa C, Bou Ayache J, et al. Magnetic Resonance Elastography of the Liver: Qualitative and Quantitative Comparison of Gradient Echo and Spin Echo Echoplanar Imaging Sequences. Investigative radiology 2016; 51:575-581

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wang J, Glaser KJ, Zhang T, et al. Assessment of advanced hepatic MR elastography methods for susceptibility artifact suppression in clinical patients. J Magn Reson Imaging 2018; 47:976-987

    Article  PubMed  Google Scholar 

  103. Kim YS, Jang YN, Song JS. Comparison of gradient-recalled echo and spin-echo echo-planar imaging MR elastography in staging liver fibrosis: a meta-analysis. Eur Radiol 2018; 28:1709-1718

    Article  PubMed  Google Scholar 

  104. Morisaka H, Motosugi U, Glaser KJ, et al. Comparison of diagnostic accuracies of two- and three-dimensional MR elastography of the liver. J Magn Reson Imaging 2017; 45:1163-1170

    Article  PubMed  Google Scholar 

  105. Asbach P, Klatt D, Hamhaber U, et al. Assessment of liver viscoelasticity using multifrequency MR elastography. Magn Reson Med 2008; 60:373-379

    Article  PubMed  Google Scholar 

  106. Catheline S, Gennisson JL, Delon G, et al. Measuring of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. The Journal of the Acoustical Society of America 2004; 116:3734-3741

    Article  CAS  PubMed  Google Scholar 

  107. Guo J, Posnansky O, Hirsch S, et al. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography. Phys Med Biol 2012; 57:4041–4053

  108. Klatt D, Friedrich C, Korth Y, Vogt R, Braun J, Sack I. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography. Biorheology 2010; 47:133-141

    Article  PubMed  Google Scholar 

  109. Vappou J, Maleke C, Konofagou EE. Quantitative viscoelastic parameters measured by harmonic motion imaging. Phys Med Biol 2009; 54:3579-3594

    Article  PubMed  Google Scholar 

  110. Doyley MM. Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys Med Biol 2012; 57:R35-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sack I, Beierbach B, Wuerfel J, et al. The impact of aging and gender on brain viscoelasticity. Neuroimage 2009; 46:652-657

    Article  PubMed  Google Scholar 

  112. Suki B, Barabasi AL, Lutchen KR. Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol (1985) 1994; 76:2749-2759

    Google Scholar 

  113. Robert B, Sinkus R, Larrat B, Tanter M, Fink M. A New Rheological Model Based on Fractional Derivatives for Biological Tissues. In: IEEE Ultrasonics Symposium, 2006:1033–1036

  114. Klatt D, Hamhaber U, Asbach P, Braun J, Sack I. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 2007; 52:7281-7294

    Article  PubMed  Google Scholar 

  115. Barry CT, Mills B, Hah Z, et al. Shear wave dispersion measures liver steatosis. Ultrasound Med Biol 2012; 38:175-182

    Article  PubMed  Google Scholar 

  116. Yin M, Glaser KJ, Manduca A, et al. Distinguishing between Hepatic Inflammation and Fibrosis with MR Elastography. Radiology 2017:160622

  117. Yin Z, Glaser KJ, Manduca A, et al. Slip Interface Imaging Predicts Tumor-Brain Adhesion in Vestibular Schwannomas. Radiology 2015; 277:507-517

    Article  PubMed  Google Scholar 

  118. Allen AM, Shah VH, Therneau TM, et al. The Role of Three-Dimensional Magnetic Resonance Elastography in the Diagnosis of Nonalcoholic Steatohepatitis in Obese Patients Undergoing Bariatric Surgery. Hepatology (Baltimore, Md) 2018;

  119. Allen AM, Shah VH, Therneau TM, et al. Multiparametric Magnetic Resonance Elastography Improves the Detection of NASH Regression Following Bariatric Surgery. Hepatol Commun 2020; 4:185-192

    Article  PubMed  Google Scholar 

  120. Dzyubak B, Venkatesh SK, Manduca A, Glaser KJ, Ehman RL. Automated liver elasticity calculation for MR elastography. Journal of magnetic resonance imaging : JMRI 2015;

  121. Dzyubak B, Glaser KJ, Manduca A, Ehman RL. Automated Liver Elasticity Calculation for 3D MRE. Proceedings of SPIE--the International Society for Optical Engineering 2017; 10134

  122. Murphy MC, Manduca A, Trzasko JD, Glaser KJ, Huston J, Ehman RL. Artificial neural networks for stiffness estimation in magnetic resonance elastography. Magn Reson Med 2018; 80:351-360

    Article  PubMed  Google Scholar 

  123. Serai SD, Wallihan DB, Venkatesh SK, et al. Magnetic resonance elastography of the liver in patients status-post fontan procedure: feasibility and preliminary results. Congenit Heart Dis 2014; 9:7-14

    Article  PubMed  Google Scholar 

  124. Poterucha JT, Johnson JN, Qureshi MY, et al. Magnetic Resonance Elastography: A Novel Technique for the Detection of Hepatic Fibrosis and Hepatocellular Carcinoma After the Fontan Operation. Mayo Clin Proc 2015; 90:882-894

    Article  PubMed  Google Scholar 

  125. Poterucha JT, Venkatesh SK, Novak JL, Cetta F. Liver Nodules after the Fontan Operation: Role of Magnetic Resonance Elastography. Tex Heart Inst J 2015; 42:389-392

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sugimoto M, Oka H, Kajihama A, et al. Non-invasive assessment of liver fibrosis by magnetic resonance elastography in patients with congenital heart disease undergoing the Fontan procedure and intracardiac repair. J Cardiol 2016; 68:202-208

    Article  PubMed  Google Scholar 

  127. Silva-Sepulveda JA, Fonseca Y, Vodkin I, et al. Evaluation of Fontan liver disease: Correlation of transjugular liver biopsy with magnetic resonance and hemodynamics. Congenit Heart Dis 2019; 14:600-608

    Article  PubMed  Google Scholar 

  128. Egbe A, Miranda WR, Connolly HM, et al. Temporal changes in liver stiffness after Fontan operation: Results of serial magnetic resonance elastography. Int J Cardiol 2018; 258:299-304

    Article  PubMed  Google Scholar 

  129. Alsaied T, Possner M, Lubert AM, et al. Relation of Magnetic Resonance Elastography to Fontan Failure and Portal Hypertension. Am J Cardiol 2019; 124:1454-1459

    Article  CAS  PubMed  Google Scholar 

  130. Venkatesh SK, Hoodeshenas S, Venkatesh SH, et al. Magnetic Resonance Elastography of Liver in Light Chain Amyloidosis. J Clin Med 2019; 8

  131. Bohte AE, van Dussen L, Akkerman EM, et al. Liver fibrosis in type I Gaucher disease: magnetic resonance imaging, transient elastography and parameters of iron storage. PLoS ONE 2013; 8:e57507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Serai SD, Naidu AP, Andrew Burrow T, Prada CE, Xanthakos S, Towbin AJ. Correlating liver stiffness with disease severity scoring system (DS3) values in Gaucher disease type 1 (GD1) patients. Mol Genet Metab 2018; 123:357-363

    Article  CAS  PubMed  Google Scholar 

  133. Navin PJ, Gidener T, Allen AM, et al. The Role of Magnetic Resonance Elastography in the Diagnosis of Noncirrhotic Portal Hypertension. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 2019;

  134. Navin PJ, Hilscher MB, Welle CL, et al. The Utility of MR Elastography to Differentiate Nodular Regenerative Hyperplasia from Cirrhosis. Hepatology (Baltimore, Md) 2019; 69:452-454

    Article  Google Scholar 

  135. Cannella R, Minervini MI, Rachakonda V, Bollino G, Furlan A. Liver stiffness measurement in patients with nodular regenerative hyperplasia undergoing magnetic resonance elastography. Abdom Radiol (NY) 2020; 45:373-383

    Article  Google Scholar 

  136. Cui J, Philo L, Nguyen P, et al. Sitagliptin vs. placebo for non-alcoholic fatty liver disease: A randomized controlled trial. J Hepatol 2016; 65:369–376

  137. Jayakumar S, Middleton MS, Lawitz EJ, et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: Analysis of data from a phase II trial of selonsertib. J Hepatol 2019; 70:133-141

    Article  PubMed  Google Scholar 

  138. Ajmera VH, Cachay E, Ramers C, et al. MRI Assessment of Treatment Response in HIV-associated NAFLD: A Randomized Trial of a Stearoyl-Coenzyme-A-Desaturase-1 Inhibitor (ARRIVE Trial). Hepatology (Baltimore, Md) 2019; 70:1531-1545

    Article  CAS  Google Scholar 

  139. Harrison SA, Dennis A, Fiore MM, et al. Utility and variability of three non-invasive liver fibrosis imaging modalities to evaluate efficacy of GR-MD-02 in subjects with NASH and bridging fibrosis during a phase-2 randomized clinical trial. PLoS One 2018; 13:e0203054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Lee DH, Lee JM, Yi NJ, et al. Hepatic stiffness measurement by using MR elastography: prognostic values after hepatic resection for hepatocellular carcinoma. Eur Radiol 2017; 27:1713-1721

    Article  PubMed  Google Scholar 

  141. Ichikawa S, Motosugi U, Oguri M, Onishi H. Magnetic resonance elastography for prediction of radiation-induced liver disease after stereotactic body radiation therapy. Hepatology (Baltimore, Md) 2017; 66:664-665

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Lucy Bahn, PhD, in preparation of this manuscript. Dr. Meng Yin acknowledges the support from NIH grant (EB017197) and U.S. Department of Defense grant (W81XWH-19-1-0583-01). Dr. Sudhakar Venkatesh acknowledges support from U.S. Department of Defense grant (W81XWH-19-1-0583-01) and NIH grant R37 EB001981.

Funding

No funding received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar K. Venkatesh.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest to declare for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idilman, I.S., Li, J., Yin, M. et al. MR elastography of liver: current status and future perspectives. Abdom Radiol 45, 3444–3462 (2020). https://doi.org/10.1007/s00261-020-02656-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02656-7

Keywords

Navigation