Skip to main content

Advertisement

Log in

Diagnostic performance of magnetic resonance to assess treatment response after neoadjuvant therapy in patients with locally advanced rectal cancer

  • Special Section: Rectal Cancer
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Our study aimed to evaluate the diagnostic performance of rectal magnetic resonance imaging (MRI) for local restaging in patients with non-metastatic locally advanced rectal cancer (LARC) after neoadjuvant chemoradiotherapy (CRT) using surgical histopathology of total mesorectal excision as the reference standard.

Methods

Ninety-five patients with LARC who underwent rectal MRI after CRT between January 2014 and December 2016 were included. Accuracy, sensitivity, specificity, positive, and negative predictive value for local staging regarding T-stage, N-stage, circumferential resection margin, and MRI tumor regression grade (ymriTRG) were calculated, and inter-test agreements were assessed.

Results

22/95 (23.2%) patients had radiological complete response (rCR), whereas 20/95 (21.1%) had pathological complete response (pCR). Among the patients with pCR, 11/20 (55%) had rCR. Fair agreement was demonstrated between ymriTRG and pathological TRG (ypTRG) (κ = 0.255). The sensitivity and specificity for detection of pCR were 61.1% (95% CI 35.7–82.7) and 89.6% (95% CI 80.6–95.4). For the detection of ypTRG grades 1 and 2, the corresponding values were 67.2% (95% CI 54.3–78.4) and 51.6 (95% CI 33.1–69.8). The accuracy of ymriTRG was 24.2% (95% CI 15.6–32.8). Inter-test agreement in TRG between MRI and pathology was overall fair (κ = 0.255) and slight (κ = 0.179), if TRG 1 + 2.

Conclusion

Qualitative assessment on MRI for diagnosing pCR showed moderate sensitivity and high specificity, whereas the diagnosis of TRG had moderate sensitivity and low specificity with slight to fair inter-test agreement when compared with pathological specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heald RJ, Ryall RD. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet. 1986;1(8496):1479-82

    Article  CAS  Google Scholar 

  2. Krook JE, Moertel CG, Gunderson LL, Wieand HS, Collins RT, Beart RW, et al. Effective surgical adjuvant therapy for high-risk rectal carcinoma. N Engl J Med. 1991;324(11):709-15

    Article  CAS  Google Scholar 

  3. Group GTS. Prolongation of the disease-free interval in surgically treated rectal carcinoma. N Engl J Med. 1985;312(23):1465-72

    Article  Google Scholar 

  4. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731-40

    Article  CAS  Google Scholar 

  5. NCCN. NCCN Guidelines Version 1.2018 Rectal Cancer 2018

  6. Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U, Jr., Silva e Sousa AH, Jr., et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240(4):711-7; discussion 7-8

  7. Maas M, Nelemans PJ, Valentini V, Das P, Rodel C, Kuo LJ, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11(9):835-44

    Article  Google Scholar 

  8. Pahlman L, Bohe M, Cedermark B, Dahlberg M, Lindmark G, Sjodahl R, et al. The Swedish rectal cancer registry. Br J Surg. 2007;94(10):1285-92

    Article  CAS  Google Scholar 

  9. Nahas SC, Rizkallah Nahas CS, Sparapan Marques CF, Ribeiro U, Cotti GC, Imperiale AR, et al. Pathologic Complete Response in Rectal Cancer: Can We Detect It? Lessons Learned From a Proposed Randomized Trial of Watch-and-Wait Treatment of Rectal Cancer. Dis Colon Rectum. 2016;59(4):255-63

    Article  Google Scholar 

  10. Habr-Gama A, Perez R, Proscurshim I, Gama-Rodrigues J. Complete clinical response after neoadjuvant chemoradiation for distal rectal cancer. Surg Oncol Clin N Am. 2010;19(4):829-45

    Article  Google Scholar 

  11. Renehan AG, Malcomson L, Emsley R, Gollins S, Maw A, Myint AS, et al. Watch-and-wait approach versus surgical resection after chemoradiotherapy for patients with rectal cancer (the OnCoRe project): a propensity-score matched cohort analysis. Lancet Oncol. 2016;17(2):174-83

    Article  Google Scholar 

  12. Habr-Gama A, de Souza PM, Ribeiro U, Nadalin W, Gansl R, Sousa AH, et al. Low rectal cancer: impact of radiation and chemotherapy on surgical treatment. Dis Colon Rectum. 1998;41(9):1087-96

    Article  CAS  Google Scholar 

  13. Patel UB, Taylor F, Blomqvist L, George C, Evans H, Tekkis P, et al. Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol. 2011;29(28):3753-60

    Article  Google Scholar 

  14. Patel UB, Brown G, Rutten H, West N, Sebag-Montefiore D, Glynne-Jones R, et al. Comparison of magnetic resonance imaging and histopathological response to chemoradiotherapy in locally advanced rectal cancer. Ann Surg Oncol. 2012;19(9):2842-52

    Article  Google Scholar 

  15. Sclafani F, Brown G, Cunningham D, Wotherspoon A, Mendes LST, Balyasnikova S, et al. Comparison between MRI and pathology in the assessment of tumour regression grade in rectal cancer. Br J Cancer. 2017;117(10):1478-85

    Article  Google Scholar 

  16. Siddiqui MR, Gormly KL, Bhoday J, Balyansikova S, Battersby NJ, Chand M, et al. Interobserver agreement of radiologists assessing the response of rectal cancers to preoperative chemoradiation using the MRI tumour regression grading (mrTRG). Clin Radiol. 2016;71(9):854-62

    Article  CAS  Google Scholar 

  17. Horvat N, Petkovska I, Gollub MJ. MR Imaging of Rectal Cancer. Radiol Clin North Am. 2018;56(5):751-74

    Article  Google Scholar 

  18. Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF, et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer. 1994;73(11):2680-6

    CAS  PubMed  Google Scholar 

  19. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74

    Article  CAS  Google Scholar 

  20. Fayaz MS, Demian GA, Fathallah WM, Eissa HE, El-Sherify MS, Abozlouf S, et al. Significance of Magnetic Resonance Imaging-Assessed Tumor Response for Locally Advanced Rectal Cancer Treated With Preoperative Long-Course Chemoradiation. J Glob Oncol. 2016;2(4):216-21

    Article  Google Scholar 

  21. Bhoday J, Smith F, Siddiqui MR, Balyasnikova S, Swift RI, Perez R, et al. Magnetic Resonance Tumor Regression Grade and Residual Mucosal Abnormality as Predictors for Pathological Complete Response in Rectal Cancer Postneoadjuvant Chemoradiotherapy. Dis Colon Rectum. 2016;59(10):925-33

    Article  Google Scholar 

  22. Tulchinsky H, Shmueli E, Figer A, Klausner JM, Rabau M. An interval > 7 weeks between neoadjuvant therapy and surgery improves pathologic complete response and disease-free survival in patients with locally advanced rectal cancer. Annals of surgical oncology. 2008;15(10):2661-7

    Article  Google Scholar 

  23. Garcia-Aguilar J, Marcet J, Coutsoftides T, Cataldo P, Fichera A, Smith LE, et al. Impact of neoadjuvant chemotherapy following chemoradiation on tumor response, adverse events, and surgical complications in patients with advanced rectal cancer treated with TME. J Clin Oncol. 2011;29(15)

  24. Beddy D, Hyland JM, Winter DC, Lim C, White A, Moriarty M, et al. A simplified tumor regression grade correlates with survival in locally advanced rectal carcinoma treated with neoadjuvant chemoradiotherapy. Ann Surg Oncol. 2008;15(12):3471-7

    Article  CAS  Google Scholar 

  25. Mignanelli ED, de Campos-Lobato LF, Campos-Lobato LF, Stocchi L, Lavery IC, Dietz DW. Downstaging after chemoradiotherapy for locally advanced rectal cancer: is there more (tumor) than meets the eye? Dis Colon Rectum. 2010;53(3):251-6

    Article  Google Scholar 

  26. Lambregts DM, Rao SX, Sassen S, Martens MH, Heijnen LA, Buijsen J, et al. MRI and Diffusion-weighted MRI Volumetry for Identification of Complete Tumor Responders After Preoperative Chemoradiotherapy in Patients With Rectal Cancer: A Bi-institutional Validation Study. Annals of surgery. 2015;262(6):1034-9

    Article  Google Scholar 

  27. Hotker AM, Tarlinton L, Mazaheri Y, Woo KM, Gonen M, Saltz LB, et al. Multiparametric MRI in the assessment of response of rectal cancer to neoadjuvant chemoradiotherapy: A comparison of morphological, volumetric and functional MRI parameters. European radiology. 2016;26(12):4303-12

    Article  Google Scholar 

  28. van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269(1):101-12

    Article  Google Scholar 

  29. van den Broek JJ, van der Wolf FS, Lahaye MJ, Heijnen LA, Meischl C, Heitbrink MA, et al. Accuracy of MRI in Restaging Locally Advanced Rectal Cancer After Preoperative Chemoradiation. Dis Colon Rectum. 2017;60(3):274-83

    Article  Google Scholar 

  30. Trakarnsanga A, Gonen M, Shia J, Nash GM, Temple LK, Guillem JG, et al. Comparison of Tumor Regression Grade Systems for Locally Advanced Rectal Cancer After Multimodality Treatment. Jnci-Journal of the National Cancer Institute. 2014;106(10)

  31. Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ, Beets GL, Maas M. Value of DCE-MRI for staging and response evaluation in rectal cancer: A systematic review. Eur J Radiol. 2017;95:155-68

    Article  Google Scholar 

  32. Martens MH, Lambregts DM, Papanikolaou N, Alefantinou S, Maas M, Manikis GC, et al. Magnetization transfer imaging to assess tumour response after chemoradiotherapy in rectal cancer. Eur Radiol. 2016;26(2):390-7

    Article  Google Scholar 

  33. Martens MH, Lambregts DM, Papanikolaou N, Heijnen LA, Riedl RG, zur Hausen A, et al. Magnetization transfer ratio: a potential biomarker for the assessment of postradiation fibrosis in patients with rectal cancer. Invest Radiol. 2014;49(1):29-34

  34. Horvat N, Veeraraghavan H, Khan M, Blazic I, Zheng J, Capanu M, et al. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology. 2018:172300

  35. Cusumano D, Dinapoli N, Boldrini L, Chiloiro G, Gatta R, Masciocchi C, et al. Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med. 2017

  36. Liu Z, Zhang XY, Shi YJ, Wang L, Zhu HT, Tang Z, et al. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Clin Cancer Res. 2017;23(23):7253-62

    Article  CAS  Google Scholar 

Download references

Funding

The authors have no support or funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natally Horvat.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical approval

For this type of study formal consent is not required. This article does not contain any studies with animals performed by any of the authors.

Appendix

Appendix

See Table 8.

Table 8 MRI parameters at our institution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahas, S.C., Nahas, C.S.R., Cama, G.M. et al. Diagnostic performance of magnetic resonance to assess treatment response after neoadjuvant therapy in patients with locally advanced rectal cancer. Abdom Radiol 44, 3632–3640 (2019). https://doi.org/10.1007/s00261-019-01894-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-01894-8

Keywords

Navigation