Skip to main content

Advertisement

Log in

Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to determine liver, pancreas, kidney, and vertebral fat deposition in NAFLD patients by proton density fat fraction (PDFF) using magnetic resonance imaging (MRI) and to evaluate the relationships among them.

Methods

A total of 41 biopsy-proven NAFLD patients underwent MRI-PDFF with IDEAL-IQ. MRI protocol included T1-independent volumetric multi-echo gradient-echo imaging with T2* correction and spectral fat modeling. The MR examinations were performed on a 1.5 HDx MRI system. MRI-PDFF measurements were obtained from liver, pancreas, renal cortex and sinus, and vertebral body. Liver biopsy specimens were retrieved from the archives and evaluated by one pathologist according to NASH CRN.

Results

The median age of the patients was 47 years. The median interval between liver biopsy and MRI examination was 16 days. Mean liver, pancreas, renal cortex, renal sinus, T12 and L1 vertebral body MRI-PDFFs were 18.7%, 5.7%, 1.7%, 51%, 43.2%, and 43.5%, respectively. No correlation between either liver MRI-PDFF or histological steatosis, and other organ MRI-PDFFs was observed. A good correlation between pancreas and vertebral body MRI-PDFFs, and pancreas and renal sinus MRI-PDFFs was observed. Diabetic patients had higher average pancreas MRI-PDFF compared to non-diabetics (12.2%, vs., 4.8%; P = 0.028).

Conclusions

Pancreas and vertebral body MRI-PDFF is well correlated in NAFLD patients and both of them are higher in diabetic patients which may explain increased bone fractures in diabetics. MRI-PDFF can be used to demonstrate fat fractions of different organs and tissues and to understand fat metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    Article  CAS  PubMed  Google Scholar 

  2. Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 37:1202–1219

    Article  PubMed  Google Scholar 

  3. Vuppalanchi R, Chalasani N (2009) Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 49:306–317

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lewis JR, Mohanty SR (2010) Nonalcoholic fatty liver disease: a review and update. Dig Dis Sci 55:560–578

    Article  PubMed  Google Scholar 

  5. Bravo A, Sheth S, Chopra S (2001) Liver biopsy. N Engl J Med 344:495–500

    Article  CAS  PubMed  Google Scholar 

  6. Longo R, Pollesello P, Ricci C, et al. (1995) Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 5:281–285

    Article  CAS  PubMed  Google Scholar 

  7. Szczepaniak LS, Nurenberg P, Leonard D, et al. (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:462–468

    Article  Google Scholar 

  8. Cowin GJ, Jonsson JR, Bauer JD, et al. (2008) Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. J Magn Reson Imaging 28:937–945

    Article  PubMed  Google Scholar 

  9. Reeder SB, Cruite I, Hamilton G, Sirlin CB (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749

    Article  PubMed  Google Scholar 

  10. Reeder SB, Sirlin CB (2010) Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am 18:337–357

    Article  PubMed Central  PubMed  Google Scholar 

  11. Reeder SB, Robson PM, Yu H, et al. (2009) Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 29:1332–1339

    Article  PubMed Central  PubMed  Google Scholar 

  12. Yokoo T, Bydder M, Hamilton G, et al. (2009) Nonalcoholic fatty liver disease: diagnostic fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology 251:67–76

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kim H, Taksali SE, Dufour S, et al. (2008) Comparative MR study of hepatic fat quantification using single voxel proton spectroscopy, two point Dixon and three-point IDEAL. Magn Reson Med 59:521–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Permutt Z, Le TA, Peterson MR, et al. (2012) Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease—MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther 36:22–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Tang A, Tan J, Sun M, et al. (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267:422–431

    Article  PubMed Central  PubMed  Google Scholar 

  16. Idilman IS, Aniktar H, Idilman R, et al. (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267:767–775

    Article  PubMed  Google Scholar 

  17. Patel NS, Peterson MR, Brenner DA, et al. (2013) Association between novel MRI-estimated pancreatic fat and liver histology-determined steatosis and fibrosis in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 37:630–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Patel NS, Peterson MR, Lin GY, et al. (2013) Insulin resistance increases MRI-estimated pancreatic fat in nonalcoholic fatty liver disease and normal controls. Gastroenterol Res Pract. doi:10.1155/2013/498296

    PubMed Central  PubMed  Google Scholar 

  19. Kleiner DE, Brunt EM, Van Natta ML, et al. (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  20. World Health Organization (1999) Report of a WHO consultation: definition of metabolic syndrome in definition, diagnosis and classification of diabetes mellitus. Geneva: World Health organization, Department of Noncommunicable Disease Surveillance

    Google Scholar 

  21. Matthews DR, Hosker JP, Rudenski AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  22. Schwenzer NF, Machann J, Martirosian P, et al. (2008) Quantification of pancreatic lipomatosis and liver steatosis by MRI: comparison of in/opposed-phase and spectral-spatial excitation techniques. Invest Radiol 43:330–337

    Article  PubMed  Google Scholar 

  23. Sijens PE, Edens MA, Bakker SJ, Stolk RP (2010) MRI-determined fat content of human liver, pancreas and kidney. World J Gastroenterol 16:1558–1559

    Article  PubMed Central  PubMed  Google Scholar 

  24. Tushuizen ME, Bunck MC, Pouwels PJ, et al. (2007) Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 30:2916–2921

    Article  CAS  PubMed  Google Scholar 

  25. Kim SY, Kim H, Cho JY, et al. (2014) Quantitative assessment of pancreatic fat using unenhanced CT: pathologic correlation and clinical implications. Radiology 271:104–112

    Article  PubMed  Google Scholar 

  26. Chunghtai HL, Morgan TM, Rocco M, et al. (2010) Renal sinus fat and poor blood pressure control in middle aged and elderly individuals at risk for cardiovascular events. Hypertension 56:901–906

    Article  Google Scholar 

  27. Foster MC, Hwang SJ, Poster SA, et al. (2011) Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension 58:784–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Shen W, Chen J, Punyanitya M, et al. (2007) MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int 18:641–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Shen W, Scherzer R, Gantz M, et al. (2012) Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 97:1337–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bredella MA, Gill CM, Gerweck AV, et al. (2013) Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology. 269:534–541

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ergen FB, Gulal G, Yildiz AE, et al. (2013) Fat fraction estimation of the vertebrae in females using the T2*-IDEAL technique in detection of reduced bone mineralization level: comparison with bone mineral densitometry. J Comput Assist Tomogr 38:320–324

    Article  Google Scholar 

  32. Pirgon O, Bilgin H, Tolu I, et al. (2011) Correlation of insulin sensitivity with bone mineral status in obese adolescents with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 75:189–195

    Article  CAS  Google Scholar 

  33. Campos RM, de Piano A, da Silva PL, et al. (2012) The role of pro/anti-inflammatory adipokines on bone metabolism in NAFLD obese adolescents: effects of long-term interdisciplinary therapy. Endocrine 42:146–156

    Article  CAS  PubMed  Google Scholar 

  34. Pardee PE, Dunn W, Schwimmer JB (2012) Non-alcoholic fatty liver disease is associated with low bone mineral density in obese children. Aliment Pharmacol Ther. 35:248–254

    Article  CAS  PubMed  Google Scholar 

  35. Moon SS, Lee YS, Kim SW (2012) Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women. Endocrine 42:423–429

    Article  CAS  PubMed  Google Scholar 

  36. Karampinos DC, Melkus G, Baum T, et al. (2013) Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS. Magn Reson Med. doi:10.1002/mrm.24775

    PubMed Central  PubMed  Google Scholar 

  37. Gee CS, Nguyen JT, Marquez CJ, et al. (2014) Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging. doi:10.1002/jmri.24795

    PubMed  Google Scholar 

  38. Cornish J, Callon KE, Bava U, et al. (2001) Effects of calcitonin, amylin and calcitonin gene-related peptide on osteoclast development. Bone 29:162–168

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed LA, Joakimsen RM, Berntsen GK, Fonnebo V, Schirmer H (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500

    Article  PubMed  Google Scholar 

  40. Strotmeyer ES, Cauley JA, Schwartz AV, et al. (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617

    Article  PubMed  Google Scholar 

  41. Janghorbani M, Feskanich D, Willett WC, Hu F (2006) Prospective study of diabetes and risk of hip fracture: the Nurses’ Health Study. Diabetes Care 29:1573–1578

    Article  PubMed  Google Scholar 

  42. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505

    Article  PubMed  Google Scholar 

  43. Patsch JM, Li X, Baum T, et al. (2013) Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res 28:1721–1728

    Article  PubMed Central  PubMed  Google Scholar 

  44. Baum T, Yap SP, Karampinos DC, et al. (2012) Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging 35:117–124

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Musturay Karcaaltincaba has been supported by the Turkish Academy of Sciences (TUBA), in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2011). Ramazan Idilman is an associate member of the TUBA.

Conflict of interest

None of the authors have relevant conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musturay Karcaaltincaba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idilman, I.S., Tuzun, A., Savas, B. et al. Quantification of liver, pancreas, kidney, and vertebral body MRI-PDFF in non-alcoholic fatty liver disease. Abdom Imaging 40, 1512–1519 (2015). https://doi.org/10.1007/s00261-015-0385-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0385-0

Keywords

Navigation