Skip to main content

Advertisement

Log in

Clinical application of sonoelastography in thyroid, prostate, kidney, pancreas, and deep venous thrombosis

  • Pictorial Essay
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

This article reviews the clinical applications of current ultrasound elastography methods in non-hepatic conditions including thyroid nodules, prostate cancer, chronic kidney disease, solid renal lesions, pancreatic lesions, and deep vein thrombosis. Pathophysiology alters tissue mechanical properties via ultrastructural changes including fibrosis, increased cellularity, bleeding, and necrosis, creating a target biomarker, which can be imaged qualitatively or quantitatively with US elastography. US elastography methods can add information to conventional US methods and improve the diagnostic performance of conventional US in a range of disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Reference

  1. Rybinski B, Franco-Barraza J, Cukierman E (2014) The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 46(7):223–244

    Article  CAS  PubMed  Google Scholar 

  2. Tan GH, Gharib H, Reading CC (1995) Solitary thyroid nodule. Comparison between palpation and ultrasonography. Arch Intern Med 155(22):2418–2423

    Article  CAS  PubMed  Google Scholar 

  3. Parker KJ, Doyley MM, Rubens DJ (2012) Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol 57(16):5359–5360

    Article  Google Scholar 

  4. Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134

    Article  CAS  PubMed  Google Scholar 

  5. Chandrasekhar R, Ophir J, Krouskop T, Ophir K (2006) Elastographic image quality vs. tissue motion in vivo. Ultrasound Med Biol 32(6):847–855

    Article  CAS  PubMed  Google Scholar 

  6. Nightingale K, McAleavey S, Trahey G (2003) Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol 29(12):1715–1723

    Article  PubMed  Google Scholar 

  7. Gharib H, Papini E, Paschke R, et al. (2010) American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocr Pract 16(s1):1–43

    Article  PubMed  Google Scholar 

  8. Werk EE, Vernon BM, Gonzalez JJ, Ungaro PC, McCoy RC (1984) Cancer in thyroid nodules. A community hospital survey. Arch Intern Med 144(3):474–476

    Article  PubMed  Google Scholar 

  9. Belfiore A, Giuffrida D, La Rosa GL, et al. (1989) High frequency of cancer in cold thyroid nodules occurring at young age. Acta Endocrinol (Copenh). 121(2):197–202

    CAS  PubMed  Google Scholar 

  10. Kim E-K, Park CS, Chung WY, et al. (2002) New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. Am J Roentgenol 178(3):687–691

    Article  Google Scholar 

  11. Sipos JA (2009) Advances in ultrasound for the diagnosis and management of thyroid cancer. Thyroid 19(12):1363–1372

    Article  PubMed  Google Scholar 

  12. Wang Y, Dan HJ, Dan HY, Li T, Hu B (2010) Differential diagnosis of small single solid thyroid nodules using real-time ultrasound elastography. J Int Med Res 38(2):466–472

    Article  CAS  PubMed  Google Scholar 

  13. Dighe M, Luo S, Cuevas C, Kim Y (2013) Efficacy of thyroid ultrasound elastography in differential diagnosis of small thyroid nodules. Eur J Radiol. Elsevier Ireland Ltd 82(6):e274–e280

    Article  Google Scholar 

  14. Rivo-Vázquez Á, Rodríguez-Lorenzo Á, Rivo-Vázquez JE, et al. (2013) The use of ultrasound elastography in the assessment of malignancy risk in thyroid nodules and multinodular goitres. Clin Endocrinol 79(6):887–891

    Article  Google Scholar 

  15. Kwak JY, Kim E-K (2014) Ultrasound elastography for thyroid nodules: recent advances. Ultrasonography. 33(2):75–82

    Article  PubMed Central  PubMed  Google Scholar 

  16. Cappelli C, Pirola I, Gandossi E, et al. (2012) Real-time elastography: a useful tool for predicting malignancy in thyroid nodules with nondiagnostic cytologic findings. J Ultrasound Med 31(11):1777–1782

    PubMed  Google Scholar 

  17. Lyshchik A, Higashi T, Asato R, et al. (2005) Thyroid gland tumor diagnosis at US elastography 1. Radiology 237(1):202–211

    Article  PubMed  Google Scholar 

  18. Rago T, Santini F, Scutari M, Pinchera A, Vitti P (2007) Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab 92(8):2917–2922

    Article  CAS  PubMed  Google Scholar 

  19. Sun J, Cai J, Wang X (2014) Real-time ultrasound elastography for differentiation of benign and malignant thyroid nodules: a meta-analysis. J Ultrasound Med 33(3):495–502

    Article  PubMed  Google Scholar 

  20. Chong Y, Shin JH, Ko ES, Han BK (2013) Ultrasonographic elastography of thyroid nodules: is adding strain ratio to colour mapping better? Clin Radiol 68(12):1241–1246

    Article  CAS  PubMed  Google Scholar 

  21. Azizi G, Keller J, Lewis M, et al. (2013) Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thyroid. 23(6):734–740

    Article  PubMed  Google Scholar 

  22. Kim JK, Baek JH, Lee JH, et al. (2012) Ultrasound elastography for thyroid nodules: a reliable study? Ultrasound Med Biol. Elsevier 38(9):1508–1513

    Article  Google Scholar 

  23. Sebag F, Vaillant-Lombard J, Berbis J et al. (2010) Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab 95(12):5281–5288. Available from: http://press.endocrine.org/doi/abs/10.1210/jc.2010-0766.

  24. Ko SY, Kim E-K, Sung JM, Moon HJ, Kwak JY (2014) Diagnostic performance of ultrasound and ultrasound elastography with respect to physician experience. Ultrasound Med Biol 40(5):854–863

    Article  PubMed  Google Scholar 

  25. Yerli H, Yilmaz T, Oztop I (2013) Clinical importance of diastolic sonoelastographic scoring in the management of thyroid nodules. Am J Neuroradiol 34(3):E27–E30

    Article  CAS  PubMed  Google Scholar 

  26. Friedrich-Rust M, Romenski O, Meyer G, et al. (2012) Acoustic Radiation Force Impulse-Imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics 52(1):69–74

    Article  PubMed  Google Scholar 

  27. Gu J, Du L, Bai M, et al. (2012) Preliminary study on the diagnostic value of acoustic radiation force impulse technology for differentiating between benign and malignant thyroid nodules. J Ultrasound Med 31(5):763–771

    PubMed  Google Scholar 

  28. Zhang Y-F, Xu H-X, He Y, et al. (2012) Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules. Culig Z, editor. PLoS One 7(11):e49094.

  29. Zhang F-J, Han R-L (2013) The value of acoustic radiation force impulse (ARFI) in the differential diagnosis of thyroid nodules. Eur J Radiol 82(11):e686–e690

    Article  PubMed  Google Scholar 

  30. Xu J-M, Xu X-H, Xu H-X, et al. (2014) Conventional US, US elasticity imaging, and acoustic radiation force impulse imaging for prediction of malignancy in thyroid nodules. Radiology 272(2):577–586

    Article  PubMed  Google Scholar 

  31. Zhang Y, White SB, Nicolai JR, et al. (2014) Multimodality imaging to assess immediate response to irreversible electroporation in a rat liver tumor model. Radiology 271(3):721–729

    Article  PubMed  Google Scholar 

  32. Veyrieres JB, Albarel F, Lombard JV, et al. (2012) A threshold value in Shear Wave elastography to rule out malignant thyroid nodules: A reality? Eur J Radiol. Elsevier Ireland Ltd 81(12):3965–3972

    Article  Google Scholar 

  33. Bhatia KSS, Yuen EHY, Cho CCM, et al. (2012) A pilot study evaluating real-time shear wave ultrasound elastography of miscellaneous non-nodal neck masses in a routine head and neck ultrasound clinic. Ultrasound Med Biol 38(6):933–942

    Article  PubMed  Google Scholar 

  34. Kim H, Kim J-A, Son EJ, Youk JH (2013) Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol 23(9):2532–2537

    Article  PubMed  Google Scholar 

  35. Liu B-X, Xie X-Y, Liang J-Y, et al. (2014) Shear wave elastography versus real-time elastography on evaluation thyroid nodules: A preliminary study. Eur J Radiol. 83(7):1135–1143

    Article  PubMed  Google Scholar 

  36. Sporea I, Vlad M, Bota S, et al. (2011) Thyroid stiffness assessment by acoustic radiation force impulse elastography (ARFI). Ultraschall Med 32(3):281–285

    Article  CAS  PubMed  Google Scholar 

  37. Ruchala MM, Szczepanek-Parulska EE, Zybek AA, et al. (2012) The role of sonoelastography in acute, subacute and chronic thyroiditis: a novel application of the method. Eur J Endocrinol 166(3):425–432

    Article  CAS  PubMed  Google Scholar 

  38. Kim I, Kim E-K, Yoon JH, et al. (2014) Diagnostic role of conventional ultrasonography and shearwave elastography in asymptomatic patients with diffuse thyroid disease: initial experience with 57 patients. Yonsei Med J 55(1):247–253

    Article  PubMed Central  PubMed  Google Scholar 

  39. Menzilcioglu MS, Duymus M, Gungor G, et al. (2014) The value of Real-time ultrasound elastography in chronic autoimmune thyroiditis. Br J Radiol 87(1044):20140604

    Article  CAS  PubMed  Google Scholar 

  40. Heidenreich A, Bastian PJ, Bellmunt J, et al. (2014) EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 65(1):124–137

    Article  PubMed  Google Scholar 

  41. Candefjord S, Ramser K, Lindahl OA (2009) Technologies for localization and diagnosis of prostate cancer. J Med Eng Technol 33(8):585–603

    Article  CAS  PubMed  Google Scholar 

  42. Teng J, Chen M, Gao Y, et al. (2012) Transrectal sonoelastography in the detection of prostate cancers: a meta-analysis. BJU Int 110(11b):E614–E620

    Article  PubMed  Google Scholar 

  43. Zhang B, Ma X, Zhan W, et al. (2014) Real-time elastography in the diagnosis of patients suspected of having prostate cancer: a meta-analysis. Ultrasound Med Biol 40(7):1400–1407

    Article  PubMed  Google Scholar 

  44. Nygård Y, Haukaas SA, Halvorsen OJ, et al. (2014) A positive real-time elastography is an independent marker for detection of high-risk prostate cancers in the primary biopsy setting. BJU Int 113(5b):E90–E97

    Article  PubMed  Google Scholar 

  45. Brock M, von Bodman C, Palisaar RJ, et al. (2012) The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol 187(6):2039–2043

    Article  PubMed  Google Scholar 

  46. Tsutsumi M, Miyagawa T, Matsumura T, et al. (2010) Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. Am J Roentgenol 194(6):W471–W476

    Article  Google Scholar 

  47. Correas JM, Tissier AM, Khairoune A, et al. (2013) Ultrasound elastography of the prostate: State of the art. Diagn Interv Imaging. Elsevier Masson SAS 94(5):551–560

    Article  Google Scholar 

  48. Zheng X, Ji P, Mao H, Hu J (2012) A comparison of virtual touch tissue quantification and digital rectal examination for discrimination between prostate cancer and benign prostatic hyperplasia. Radiol Oncol. 46(1):69–74

    Article  PubMed Central  PubMed  Google Scholar 

  49. Barr RG, Memo R, Schaub CR (2012) Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q. 28(1):13–20

    Article  PubMed  Google Scholar 

  50. Boehm K, Salomon G, Beyer B, et al. (2014) Shear wave elastography for localization of prostate cancer lesions and assessment of elasticity thresholds: Implications for targeted biopsies and active surveillance protocols. J Urol. doi:10.1016/j.juro.2014.09.100

    PubMed  Google Scholar 

  51. Correas J-M, Tissier A-M, Khairoune A, et al. (2014) Prostate cancer: diagnostic performance of real-time shear-wave elastography. Radiology. doi:10.1148/radiol.14140567

    PubMed  Google Scholar 

  52. Woo S, Kim SY, Cho JY, Kim SH (2014) Shear wave elastography for detection of prostate cancer: a preliminary study. Korean J Radiol. 15(3):346

    Article  PubMed Central  PubMed  Google Scholar 

  53. Garra BS (2011) Elastography: current status, future prospects, and making it work for you. Ultrasound Q. 27(3):177–186

    Article  PubMed  Google Scholar 

  54. Junker D, De Zordo T, Quentin M, et al. (2014) Real-time elastography of the prostate. Biomed Res Int. 2014(1):180804–180811

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Salomon G, Schiffmann J (2014) Real-time elastography for the detection of prostate cancer. Curr Urol Rep. 15(3):392

    Article  PubMed  Google Scholar 

  56. Zhai L, Polascik TJ, Foo W-C, et al. (2012) Acoustic radiation force impulse imaging of human prostates: initial in vivo demonstration. Ultrasound Med Biol. Elsevier Ltd 38(1):50–61

    Article  Google Scholar 

  57. Dudea SM, Giurgiu CR, Dumitriu D, et al. (2011) Value of ultrasound elastography in the diagnosis and management of prostate carcinoma. Med Ultrason. 13(1):45–53

    PubMed  Google Scholar 

  58. Zhai L, Madden J, Foo W-C, et al. (2010) Acoustic radiation force impulse imaging of human prostates ex vivo. Ultrasound Med Biol. Elsevier Ltd 36(4):576–588

    Article  Google Scholar 

  59. 2013 Atlas of Chronic Kidney Disease, pp. 1–10. www.usrds.org/2013/pdf/v1_ch6_13.pdf

  60. Hewitson TD. (2012) Fibrosis in the kidney: is a problem shared a problem halved? Fibrogenesis Tissue Repair 5(Suppl 1):S14.

  61. Grenier N, Gennisson JL, Cornelis F, Le Bras Y, Couzi L (2013) Renal ultrasound elastography. Diagn Interv Imaging. Elsevier Masson SAS 94(5):545–550

    Article  CAS  Google Scholar 

  62. Gennisson J-L, Grenier N, Combe C, Tanter M (2012) Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 38(9):1559–1567

    Article  PubMed  Google Scholar 

  63. Asano K, Ogata A, Tanaka K, et al. (2014) Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow? J Ultrasound Med 33(5):793–801

    Article  PubMed  Google Scholar 

  64. Bruno C, Caliari G, Zaffanello M, et al. (2013) Acoustic radiation force impulse (ARFI) in the evaluation of the renal parenchymal stiffness in paediatric patients with vesicoureteral reflux: preliminary results. Eur Radiol 23(12):3477–3484

    Article  PubMed  Google Scholar 

  65. Sohn B, Kim M-J, Han SW, Im YJ, Lee M-J (2014) Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys. Ultrasonography. 33(2):116–121

    Article  PubMed Central  PubMed  Google Scholar 

  66. Gao J, Weitzel W, Rubin JM, et al. (2013) Renal transplant elasticity ultrasound imaging: correlation between normalized strain and renal cortical fibrosis. Ultrasound Med Biol. Elsevier Ltd 39(9):1536–1542.

  67. Orlacchio A, Chegai F, Del Giudice C, et al. (2014) Kidney transplant: usefulness of real-time elastography (RTE) in the diagnosis of graft interstitial fibrosis. Ultrasound Med Biol 40(11):2564–2572

    Article  PubMed  Google Scholar 

  68. Stock KF, Klein BS, Cong MTV, et al. (2011) ARFI-based tissue elasticity quantification and kidney graft dysfunction: first clinical experiences. Clin Hemorheol Microcirc. 49(1–4):527–535

    CAS  PubMed  Google Scholar 

  69. Grenier N, Poulain S, Lepreux S, et al. (2012) Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol 22(10):2138–2146

    Article  PubMed  Google Scholar 

  70. Guo L-H, Xu H-X, Fu H-J, et al. (2013) Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. Sen U, editor. PLoS One 8(7):e68925.

  71. He W-Y, Jin Y-J, Wang W-P, et al. (2014) Tissue elasticity quantification by acoustic radiation force impulse for the assessment of renal allograft function. Ultrasound Med Biol. Elsevier Ltd 40(2):322–329.

  72. Wang L, Xia P, Lv K, et al. (2014) Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease. Eur Radiol 24(7):1694–1699

    Article  PubMed  Google Scholar 

  73. Cui G, Yang Z, Zhang W, et al. (2014) Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis. Exp Ther Med. 7(1):233–235

    PubMed Central  PubMed  Google Scholar 

  74. Clevert D-A, Stock K, Klein B, et al. (2009) Evaluation of Acoustic Radiation Force Impulse (ARFI) imaging and contrast-enhanced ultrasound in renal tumors of unknown etiology in comparison to histological findings. Clin Hemorheol Microcirc. 43(1–2):95–107

    PubMed  Google Scholar 

  75. Tan S, Özcan MF, Tezcan F, et al. (2013) Real-time elastography for distinguishing angiomyolipoma from renal cell carcinoma: preliminary observations. Am J Roentgenol 200(4):W369–W375

    Article  Google Scholar 

  76. Itoh Y, Itoh A, Kawashima H, et al. (2013) Quantitative analysis of diagnosing pancreatic fibrosis using EUS-elastography (comparison with surgical specimens). J Gastroenterol 49(7):1183–1192

    Article  PubMed  Google Scholar 

  77. Inokuchi R, Seki T, Ikeda K, et al. (2010) Percutaneous microwave coagulation therapy for hepatocellular carcinoma: increased coagulation diameter using a new electrode and microwave generator. Oncol Rep 24(3):621–627

    PubMed  Google Scholar 

  78. Pei Q, Zou X, Zhang X, et al. (2012) Diagnostic value of EUS elastography in differentiation of benign and malignant solid pancreatic masses: A meta-analysis. Pancreatology. 12(5):402–408

    Article  PubMed  Google Scholar 

  79. Park MK, Jo J, Kwon H, et al. (2013) Usefulness of acoustic radiation force impulse elastography in the differential diagnosis of benign and malignant solid pancreatic lesions. Ultrasonography. 33(1):26–33

    Article  PubMed Central  PubMed  Google Scholar 

  80. Inoue Y, Kokudo N (2013) Elastography for hepato-biliary-pancreatic surgery. Surg Today 44(10):1793–1800

    Article  PubMed Central  PubMed  Google Scholar 

  81. Moll S, Mackman N (2008) Venous thromboembolism: a need for more public awareness and research into mechanisms. Arterioscler Thromb Vasc Biol 28(3):367–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Orbell JH, Smith A, Burnand KG, Waltham M (2008) Imaging of deep vein thrombosis. Br J Surg 95(2):137–146

    Article  CAS  PubMed  Google Scholar 

  83. Wakefield TW, Myers DD, Henke PK (2008) Mechanisms of venous thrombosis and resolution. Arterioscler Thromb Vasc Biol 28(3):387–391

    Article  CAS  PubMed  Google Scholar 

  84. Xie H, Kim K, Aglyamov SR, et al. (2004) Staging deep venous thrombosis using ultrasound elasticity imaging: Animal model. Ultrasound Med Biol 30(10):1385–1396

    Article  PubMed  Google Scholar 

  85. Geier B, Barbera L, Muth-Werthmann D, et al. (2005) Ultrasound elastography for the age determination of venous thrombi. Evaluation in an animal model of venous thrombosis. Thromb Haemost. 93(2):368–374

    CAS  PubMed  Google Scholar 

  86. Mfoumou E, Tripette J, Blostein M, Cloutier G (2014) Time-dependent hardening of blood clots quantitatively measured in vivo with shear-wave ultrasound imaging in a rabbit model of venous thrombosis. Thromb Res. Elsevier Ltd 133(2):265–271

    Article  CAS  Google Scholar 

  87. Bernal M, Gennisson J-L, Flaud P, Tanter M (2013) Correlation between classical rheometry and supersonic shear wave imaging in blood clots. Ultrasound Med Biol. Elsevier Ltd 39(11):2123–2136

    Article  Google Scholar 

  88. Bernal M, Gennisson J-L, Flaud P, Tanter M (2012) Shear wave elastography quantification of blood elasticity during clotting. Ultrasound Med Biol. Elsevier Ltd 38(12):2218–2228

    Article  Google Scholar 

  89. Wang C, Wang L, Zhang Y, Chen M (2014) A novel approach for assessing the progression of deep venous thrombosis by area of venous thrombus in ultrasonic elastography. Clin Appl Thromb Hemost 20(3):311–317

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony E. Samir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anvari, A., Barr, R.G., Dhyani, M. et al. Clinical application of sonoelastography in thyroid, prostate, kidney, pancreas, and deep venous thrombosis. Abdom Imaging 40, 709–722 (2015). https://doi.org/10.1007/s00261-015-0383-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0383-2

Keywords

Navigation